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Abstract

Malicious software is commonly analysed dynamically by executing it in virtual sys-
tems and evaluating its behaviour. Therefore, malware developers try to detect these
arti�cial environments to bypass analysis. The goal of this bachelor's thesis is to cre-
ate an overview of the most commonly used methods, evaluate their distribution
over a big set of presumably malicious binaries and create a statement about the
prevalence of Virtual Machine (VM) detection today. This is achieved by utilis-
ing a dynamic analysis environment to automatically execute the binaries and test
them for known behaviour used to detect virtual systems. The conclusion is that
there exists a vast amount of methods to detect a VM and that they are proven
to be used in at least 2.77 % of analysed binaries. It is highly plausible that an
even higher amount of malware actually uses these methods, which is still open for
further analysis. This is an interesting result as today's computer systems are more
and more virtualised with the rise of cloud computing services like Amazon Web Ser-

vices (AWS) or Microsoft Azure, because malware would lose potential victims using
these systems when employing VM detection methods.
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1 Introduction

This chapter gives a general outline for this thesis and introduces the topic of VM
detection. It describes the motivation for this work in Section 1.1. Related work
that has been carried out is discussed and put into context of this thesis in Section
1.2. Also in Section 1.3 the contributions of this thesis are described. Finally the
organisation of this thesis is presented in Section 1.4.

1.1 Motivation

Software can be analysed for their potential malicious intention in multiple ways.
One method is static analysis in which a binary sample is examined by reviewing it
without executing, for example with reverse engineering. This is a tedious job, which
can be slowed down or impeded by using various obfuscation techniques [26, 29, 31].
It should be noted that any analysed binary will be referred to as sample in this thesis
without regard of its possible malicious or benign background.

To overcome these challenges, another approach is dynamic analysis. This is per-
formed, in contrast to the static procedure, by executing the binary in a controlled
and monitored environment, observing its behaviour. Actual malicious actions are
easier to detect if they are executed, becauce it is harder to hide them. All ob-
fuscation methods have to be disbanded at some point to tell the system what to
do. Ransomware1 for instance has to edit user �les in order to encrypt them which
can hardly be done without the Windows Application Programming Interface (API)
and system calls. Those are monitored in most dynamic analysis systems. Another
example are command-and-control servers that have to be reached via some sort of
network communication. This can not be done without a network interface which
can be monitored as well.

One method to perform dynamic analysis is to run samples in VMs and inspect its
behaviour from outside using techniques like Virtual Machine Introspection (VMI).
Unfortunately, by doing this a new problem arises. A VM can never perfectly em-
ulate a real system. There are always some aspects that show that the current
instance is only a virtualised. Examples for this are timing discrepancies in com-
parison to a real machine [2]. These and other indications of virtual systems can

1Ransomware encrypts data on a victim's system and demands ransom in exchange for the de-
cryption key.
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sometimes be checked. Indicators are for instance the existence of certain drivers,
device names or registry keys, referring to speci�c virtual machine managers [4, 12,
18, 19].

Malware developers are aware of this and therefore implement methods to detect
virtual machines and evade analysis. One example is ransomware Locky. It uses
the Read Time-Stamp Counter (RDTSC) instruction to count the number of cycles
the system performed since the last restart. Locky combines two of those instruc-
tions to measure the cycles taken to perform two certain Windows API calls. If
the amount is longer than expected, Locky assumes it is executed in a virtual
environment. It stops its malicious behaviour and changes into a dormant state
[27].

Another example is banking trojan Dridex. It checks the value of the registry key
HKLM\System\ControlSet001\Services\Disk\Enum for strings like �VMWARE� or
�VBOX�. If present, the malware hides its malicious intent and goes dormant or
crashes the system. Similar behaviour with a di�erent registry key has also been
observed on Nymain downloader [27].

1.2 Related Work

Several studies exist on �nding new methods for detecting and evading virtual en-
vironments and sandboxes. These can be grouped into di�erent categories such as
detecting system artefacts [4], performing timing attacks [2] and conducting reverse
turing tests [7, 21].

Besides �nding new methods, researchers have developed automated analysis systems
to detect evasive malware. For this generally two approaches exist. Some works focus
on detecting known methods by analysing the execution traces of malware [18] or by
looking for suspicious instructions, such as CPUID or RDTSC [2].

Other works concentrate on �nding, but not speci�cally identifying, evasive be-
haviour by executing malware on multiple systems. They then compare the actions
performed at di�erent levels on virtual and on non-virtual systems. If a noticeable
di�erence in execution at instruction level [16], system call level [1] or in the sys-
tem state, for example changes in �les, registry keys, processes, services or network
activity [19] is found, the sample is classi�ed as evasive but generally not further
inspected.

Also some open-source virtual machine detection tools exist to test a virtual system
on transparency of its arti�cial nature [20, 24]. These employ and demonstrate a
great amount of methods, however they do not issue a statement with respect to the
prevalence and reliability of these methods.
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1.3 Contribution

This thesis provides a detailed overview about various VM detection and analysis
evasion methods explaining their technical background and their functionality. It
then creates an evaluation of the prevalence and distribution of most of these methods
in today's malware by analysing 50.000 samples.

1.4 Organisation of this Thesis

In this section a brief overview of the structure of this thesis is given. In Chapter
2 the technical background is described. Also all researched VM detection methods
are presented with their usage, functionality and reliability. In Chapter 3 the de-
sign goals, assumptions and de�nitions for this thesis are discussed. Furthermore,
the implementation of the analysis system is described as well as which methods
are detected by it. Following this, in Chapter 4 the limitations of the approach
are discussed. Also tests conducted to analyse the reliability of the results of the
implementation are presented as well as the results of the evaluation of the big
set of samples. Lastly, in Chapter 5 the created results are reviewed and a con-
clusion is drawn. Finally, any possible future work resulting from this thesis is
discussed.





2 Technical Background

This chapter provides technical background for this thesis. Initially, from a high-level
perspective, the concept of dynamic malware analysis and the relevance of Windows
API calls, system calls and instructions are discussed in Section 2.1. In Section 2.2
some background about VMs and their components that are utilised by dynamic
malware analysis is described. Afterwards, Section 2.3 discusses the functionality
of the VMI implementation VMIProgram that is used by G DATA Software AG

internally. It is utilised for the dynamic analysis performed in scope of this thesis.
Lastly, in Section 2.4 various methods for detecting and evading VMs and analysis
systems are described.

2.1 Dynamic Malware Analysis

To analyse malware, one approach is to execute the sample and inspect its behaviour.
This is generally described as dynamic malware analysis. As with most technologies
in computer science, automation is highly desirable with this method. Keeping
the necessity of human interaction as low as possible allows for higher e�ciency.
Analysts carry this out by using virtualised environments. These systems can easily
and quickly be reset to their initial state. This is necessary, because to create results
as deterministically as possible an analysis has to always start with the identical,
clean state.

The behaviour of a sample can be characterised by its use of various types of func-
tion calls, system calls and machine instructions during execution. The methods to
monitor these are discussed in the Sections 2.1.1 to 2.1.4.

2.1.1 Windows API Calls

An Application Programming Interface (API) is a collection of functions provided by
an underlying or external system to be employed by developers to create programs
running on that system. The Windows API enables interaction with system resources
like �les, devices and many more. This allows a more standardised high-level abstrac-
tion for the developer to perform actions on the system that would otherwise require
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deep and complex knowledge of the underlying, system-speci�c functions. For exam-
ple the Windows API call RegOpenKey allows the developer to access a speci�ed reg-
istry key with only one simple function. The Windows registry is an internal database
for storing setting and con�guration information.

All Windows API functions are available through Dynamic-Link Libraries (DLLs).
They are included in the Windows Operating System (OS). To perform most ac-
tions in the Windows system a developer needs to access system resouces. That is
generally only possible by using the Windows API. This accounts for any developer
disregarding their potential malicious intentions. Therefore, it is desirable to trace
the use of said functions. This can be achieved in multiple ways, which are discussed
in Section 2.1.3. Hereafter the shorter term API call always refers to the action of
calling a function from the Windows API.

2.1.2 System Calls

System calls provide an interface for programs to request actions to be performed
by the system's kernel. API calls often facilitate system calls for example to create
processes, read �les, set timers and much more. Those interactions can solely be
performed by the kernel due to security reasons.

In the Windows environment these are normally not directly called by the devel-
oper. Nonetheless, it is possible to do so. Malware developers can use this fact to
circumvent analysis systems that only track API calls. How to trace system calls is
discussed in the next section as well.

2.1.3 Function Tracing

One method to achieve function tracing is hooking. This is a method for intrusively
intercepting the usage of certain functions with custom code for logging amongst
other things. This can be achieved for example by altering the original instructions
in the code of the function in memory so that before executing the original code
the system executes a jump to a custom function. This would then log the use of
the original function, execute any overwritten instructions and jump back to the
previous code. One of the �rst works implementing this method was done in 1999
by Hunt and Brubacher [14]. Another method to implement function hooks would
be to use compiler �ags, but this is only feasible if the source code is available and
the functions can be newly compiled, which is generally not the case for API and
system calls.

Function hooking works for API calls as well as system calls, as long as the hooking
program is executed with high enough privileges. This is necessary as it needs to
access memory not owned by it. The downside of this method is that it is highly
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intrusive. This makes it easy to detect these methods as shown by demonstration
tools and scienti�c research [20, 22, 24].

In contrast to this, another method to trace API calls and system calls is VMI. This
is a generally non-intrusive approach outside the analysed system. VMI is discussed
in detail in Section 2.3.

2.1.4 Instruction Tracing

A complete trace of all used instructions of a malware sample is technically hard to
create dynamically. One of the few works on this is the analysis framework Cobra

[30]. It operates similar to a debugger and runs in the kernel space of the analysed
system. It can be used to dynamically execute and analyse samples on instruction
level.

Another work on analysing instructions is using DSD-Tracer [18]. It combines static
and dynamic analysis by statically disassembling the sample to create an instruc-
tion trace. It combines this with a behavioural pro�le created during dynamically
executing it using the Bochs emulator.

A simpler but less complete approach in contrast to the aforementioned methods
would be to only trace instructions that cause VM exits using VMI. These are speci�c
to virtual environments and are described in Section 2.2.2.

2.2 Virtual Machines

Virtual environments provide many advantages for dynamic malware analysis like the
potential for e�cient automation and resetting to an initial clean state. A VM has to
be managed by a hypervisor, which is described in Section 2.2.1. The hypervisor han-
dles the creation, reset and execution of the VM. Especially when instructions that
produce VM exits are used. These cause the VM to pause the execution of the current
thread and consign the control �ow to the hypervisor. VM exits and their relevance to
dynamic malware analysis is discussed in Section 2.2.2.

2.2.1 Hypervisor

A hypervisor, or Virtual Machine Manager (VMM), manages one or multiple VMs.
It is used as an abstraction between the hardware and the VM. There are two
types of hypervisors as shown in Figure 2.1. Type-1 or native hypervisors on one
hand are directly implemented on the hardware and can freely distribute resources
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to the VMs. This provides greater e�ciency and speed as there is no system be-
tween hypervisor and hardware. An example for this type is the Xen hypervi-
sor.

A type-2 or hosted hypervisor on the other hand is installed onto a host OS. It
is easier to install and more intuitive to use. But it is far less e�cient due to
the fact that the hypervisor itself needs to be managed by the underlying host
OS like any other normal program does. An example for a type-2 hypervisor is
VirtualBox .

Hardware

Hypervisor

Guest

OS

Guest

OS

(a) Type-1 native.

Hardware

Hypervisor Hypervisor

Guest

OS

Guest

OS

Guest

OS

Guest

OS

Host

OS

(b) Type-2 hosted.

Figure 2.1: The two di�erent types of hypervisors.

2.2.2 VM Exits

When Intel Virtualization Technology (VT) is enabled, Intel's Virtual Machine Ex-
tensions (VMXs) are used. These are additional instructions used to manage VMs.
VMX have two modes of operation: VMX non-root and VMX root operation. Typ-
ically, the guest system is running in VMX non-root operation, while the hypervi-
sor runs in VMX root operation. Transitioning from VMX root to VMX non-root
operation is performed using VM entries, the opposite is achieved with VM ex-
its.

Certain instructions1 cause a VM exit when used in VMX non-root operation. If this
is the case, the thread is halted and the control �ow is passed to the hypervisor. Two
examples are the instructions CPUID and RDTSC. CPUID returns general information
about the Central Processing Unit (CPU) of the system. RDTSC is the instruction used
to read the automatically incremented timestamp counter register TSC which stores
the passed CPU cycles since the system was started.

1A full list can be found in Intel's software developer manuals [15].
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Executing instructions that cause VM exits creates more overhead and therefore
consumes more time than on a real system. Therefore, they are susceptible to be
used for detecting a VM with timing based attacks which are described in depth in
Section 2.4.2.

2.3 Virtual Machine Introspection

This section describes technical background of VMI, a technique to dynamically
analyse the runtime state of a VM. It is implemented in an internal project of
G DATA Software AG called VMIProgram, which is utilised by this work for tracing
API calls and system calls.

2.3.1 Events

The VMI implementation used in this work is based on an event-based approach to
detect whenever the behaviour of the VM has to be analysed. There are three types of
events used for this: register, memory and interrupt events.

Register events are triggered whenever certain prede�ned registers are changed. This
is for example used for the CR3 register, of which the value is unique for every active
process. It changes to the value of the currently active process. Also every change
in Model Speci�c Registers (MSRs) like FS and GS is monitored, as here the address
to the Thread Information Block (TIB) is stored. This is required to determine
the currently active thread, so that it is possible to successfully monitor functions
through multiple threads.

Memory events are triggered by manipulating the access rights of certain memory
regions. Whenever a region is tried to be read, written or executed and the corre-
sponding rights are not enabled on that area, a page fault occurs and the hypervisor
has to handle it. This is utilised by VMIProgram to trace API function calls as
described in Section 2.3.2.

Interrupt events can be triggered for example by using the debugger interrupt Int 3.
This is utilised for tracing system calls as described in Section 2.3.3.

2.3.2 Tracing Windows API Calls

The API call tracing produces a log of all issued calls. It also logs the input and
return values of certain calls that need to be con�gured beforehand. This is achieved
by utilising the VMI memory events caused if the NX bit is set to 1 on the corre-
sponding page in the Extended Page Tables (EPT). This declares a page as not
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executable, therefore if code from a marked region is tried to be executed, an excep-
tion is raised. The EPT is Intel's implementation of nested paging, the mechanism
the hypervisor uses for managing the translation of memory pages between the guest
and the physical memory.

VMIProgram controls when an exception is to be raised by setting either code regions
of the currently monitored process or of the system libraries as not executable. For
this it de�nes two states of access rights of the memory for each process, the system
DLL view and the program view as shown in Figure 2.2.

Monitored Process

Program

Code

System 

Libraries

executable

not 

executable

(a) System DLL View

Monitored Process

Program

Code

System 

Libraries
executable

not 

executable

(b) Program View

Figure 2.2: The two states of memory access rights de�ned in VMIProgram. The red
lightning bolt indicates a page fault.

A monitored process always starts in system DLL view so that whenever it tries
to execute code in the system libraries to call an API function, an exception is
raised. This exception is then handled by VMIProgram. It inspects the address of
the code to execute and deduces the used function from it. If information about
the input parameters of the function was previously de�ned in the VMIProgram, it
extracts these parameters from registers and stack, dereferences pointers if necessary
and logs the use of the function. It then changes the access rights con�guration
to the program view and hands the control back to the VM. Afterwards, the code
of the program is set to not executable. Now the API call is executed and when it
returns to the original process code, another exception is raised. Again VMIProgram
handles this by extracting the return values from registers and stack, changing the
access rights con�guration back to system DLL view and handing control back to
the VM.

2.3.3 Tracing System Calls

In contrast to the non-intrusive approach of tracing API calls by leveraging the
access rights, system calls are traced in an invasive manner. For this the system
call KiSystemService is used. This is the kernel function that takes the parameters



2.4 Virtual Machine Detection and Evasion Methods 17

which were previously pushed onto the stack by the calling program. It then calls
the system call with these parameters.

As KiSystemService is a central function when using system calls, VMIProgram
intercepts this. It replaces a line of code in the beginning with the debugger instruc-
tion Int 3. This causes an interrupt, which has to be handled by the hypervisor and
then respectively by VMIProgram. It extracts the parameters, logs the system call
and replaces the interrupt with the original instruction. It then issues a single-step,
which instructs the CPU to only execute the next instruction and hold afterwards.
Then VMIProgram restores the instruction that was just executed with the Int 3

interrupt again and hands the control back to the VM. The latter does not notice
that the call has ever been intercepted.

If the VM tries not to execute but to read the code of KiSystemService, VMIPro-
gram intercepts this by using the memory access rights to create an interrupt. It then
replaces the Int 3 interrupt with the original instruction so that the VM does not
notice that it was manipulated. After the read instruction is executed, VMIProgram
restores the Int 3 interrupt.

2.4 Virtual Machine Detection and Evasion Methods

This section describes various methods to detect or evade virtual analysis systems
that utilise VMs and their characteristics. These methods can be grouped into three
categories. When malware is scanning for system artefacts, it tries to �nd traces
left by hypervisors in the guest system. These indicators are described in detail in
Section 2.4.1. Malware can also try to use the timing di�erences between virtualised
and non-virtualised systems as shown in Section 2.4.2.

The last group describes malware that utilises interaction tests to determine if the
system is used by a human. These can be classi�ed as reverse turing tests, as the roles
of a classic turing test are changed in this case. The computer and not the human is
the judge of the humanity of the subject. This is similar to CAPTCHAs, commonly
employed by websites to protect against automation. These tests are described in
Section 2.4.3.

It should be mentioned that the results of these methods often indicate the presence
of a VM with di�erent degrees of probability. It is possible that a positive result
of some methods could also be caused by irregularities of a non-virtualised system.
Therefore, malware could execute multiple methods to detect a VM. Henceforth
methods that indicate the presence of a VM with a high probability are called reliable
methods, while methods that only o�er a low probability are called unreliable. For
example a method that �nds an obvious string left in the system by a hypervisor
is reliable, while a method only depending on disk size di�erences is considered
unreliable.
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Most code examples in this section are written in simpli�ed C++, as some necessary
and preliminary components like type casts, variable declarations and function calls
are omitted to increase the readability and focus on the VM detection method. These
examples are also in�uenced by the open source VM detection demonstration tools
al-khaser and paranoid �sh (pa�sh) [20, 24].

2.4.1 Detecting System Artefacts

Hypervisors often generate system artefacts that can be detected. These can be very
low-level for example the addresses stored in certain registers. But some artefacts
can also be very high-level, like the existence of telltale registry keys or services.
In this section various detection methods utilising these system artefacts are dis-
cussed.

Low-Level Detection

The Interrupt Descriptor Table (IDT), Local Data Table (LDT) and Global Descrip-
tor Table (GDT) registers can be inspected as low-level indicators. The IDT stores
information about the correct response to interrupts and exceptions. The LDT is
unique for every process and stores various types of descriptors. The GDT exists
only once for the whole OS. It stores for example descriptors of memory segments
like the code and data regions.

The base addresses to these tables are stored in their respective registers IDTR,
LDTR and GDTR. As these have to be di�erent on the guest system in contrast to
the host system, they generally have di�erent addresses. In the past this has been
separately observed by Rutkowska and by Klein on older VMWare and VirtualPC

systems [17, 28]. To access these registers the user space instructions SIDT, SLDT and
SGDT are su�cient. The e�ectiveness of this method can be questioned though, as
this is dependent on the implementation by the hypervisor. Quist and Smith have
already shown the unreliability of the IDT and GDT methods about two years later
[25]. Nonetheless this is still implemented in the VM detection demonstration tool
al-khaser.

Very similar to the aforementioned method is Omella's approach to check the Task
Register (TR) [23]. This register is only available on 32-bit infrastructure and stores a
pointer to the Task State Segment (TSS) of the current task. In his studies the value
returned from the respective user space instruction STR was di�erent on VMs than
on non-virtual machines. The TSS has to be virtualised as well and therefore di�ers
with the address returned on a non-virtualised system.

The way VMWare's I/O port is communicating with the hypervisor can be used as
another detection method. To issue a command the register EAX has to be set with
a speci�c value. EBX needs to hold the command parameters. ECX then has to hold a
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command number and EDX has to be set to the corresponding Command Line Tools
port number.

After �lling the parameters the instruction IN has to be used to receive the output
of the issued command. If this is done on a VMWare system, the speci�c value,
which was previously stored in EAX, is stored in register EBX afterwards. This can be
checked for and used as an indicator for the VMWare VM. This process is shown
in an assembly example in Listing 2.1. It has been observed on malware Necurs as
well as the use of the undocumented VPCEXT instruction, which is only implemented
in the VirtualPC hypervisor. If this does not generate an exception, it was clearly
executed on a VirtualPC VM [27].

1 mov eax, 564D5868h ;magic number, this equals to 'VMXh'

2 mov ebx, FFFFFFFFh ;command parameters

3 mov ecx, 0Ah ;command number

4 mov edx, 5658h ;hypervisor port number, this equals to 'VX'

5 in eax, dx

6 cmp ebx, 564D5868h ;if EBX holds the value 'VMXh', this is running on a VMWare VM

Listing 2.1: Assembly example detecting a VMWare VM using VMWare's I/O port.

Network and Device Based Detection

A more high-level method is to check information about the network adapters like
names and Media Address Control (MAC) addresses. For both of these the two
API calls GetAdaptersInfo and GetAdaptersAddresses are usable. In Listing 2.2 a
code example using GetAdaptersInfo is shown. Both functions return a linked list in
either AdapterInfo or AdapterAdresses. Here the malware can check for example
for adapter names like �VMWare� or for MAC addresses starting with 08:00:27 for
VirtualBox VMs or with 00:16:3E for Xen VMs.

1 GetAdaptersInfo(pAdapterInfo, &ulOutBufLen);

2 while (pAdapterInfo)

3 {

4 if (StrCmpI(pAdapterInfo->Description, "VMWare") == 0

5 || (pAdapterInfo->AddressLength == 6 && memcmp(pAdapterInfo->Address, "\x00\x16\x3E",

3) == 0))

6 {

7 // If either the name or the MAC address matches, this is running on a VM

8 bIsVM = true;

9 break;

10 }

11 // If VM is not found, cycle through list until nullptr

12 pAdapterInfo = pAdapterInfo->Next;

13 }

Listing 2.2: Simpli�ed code example checking for a VMWare network adapter name
and Xen MAC address using GetAdaptersInfo.
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Alternatively, malware can check for MAC addresses using Windows Management
Instrumentation (WMI) queries. WMI is Microsoft's implementation of Web-Based
Enterprise Management (WBEM), which is utilised to gather management informa-
tion from systems with a standardised method. The query structure is similar to
common database query languages like Structured Query Language (SQL). It is
possible to check for MAC addresses using the WMI query in Line 1 of Table 2.1
at the end of this section. To issue this and any other WMI query the API call
IWbemLocator::ExecQuery is used.

Other indicators are potentially existing network shares that are custom to certain
hypervisors. These can be checked using the API call WNetGetProviderName to see
if this returns the provider name �VirtualBox Shared Folders� for the network type
WNNC_NET_RDR2SAMPLE.

Malware can also check for general device names that indicate a VM. This can
be achieved by using the Windows API function CreateFile or the system call
NtCreateFile. If it does not return an error when using it with device names typical
for VMs, the check has detected the virtualised system. A simpli�ed code example
can be found in Listing 2.3. This can also be achieved by using the WMI query in
Line 2 of Table 2.1 at the end of this section.

1 hFile = CreateFile("\\\\.\\HGFS", GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING,

FILE_ATTRIBUTE_NORMAL, NULL);

2 if (hFile != INVALID_HANDLE_VALUE)

3 {

4 bIsVM = true;

5 }

Listing 2.3: Simpli�ed code example checking for a VMWare device name using
CreateFile.

Disk Property Based Detection

As another system artefact, the disk can be analysed in multiple ways. Most virtual
analysis systems only get assigned a small amount of disk space to keep the hard-
ware costs as low as possible. Therefore, malware can check the size and conclude
that, if it is smaller than a certain amount, it is running in a VM. The de�nition
of that threshold depends solely on the malware's implementation. The size of the
disk can be checked using the API calls DeviceIoControl and GetDiskFreeSpace

and the system call NtDeviceIoControl, see Listing 2.4. The disk size can also
be checked by using the WMI query in Line 3 of Table 2.1 at the end of this sec-
tion.

Besides the size also the disk's hardware ID can be checked for any strings indi-
cating a VM like �vbox� or �virtual�. This can be done by using the API call
SetupDiGetDeviceRegistryProperty, see Listing 2.5.
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1 // Define a minimum hard disk size of 80 GB in bytes.

2 minHardDiskSize = (80ULL * (1024ULL * (1024ULL * (1024ULL))));

3 // Get disk size of current disk.

4 GetDiskFreeSpaceEx(NULL, NULL, &totalNumberOfBytes, NULL);

5 if (totalNumberOfBytes.QuadPart < minHardDiskSize)

6 {

7 bIsVM = true;

8 }

Listing 2.4: Simpli�ed code example checking the disk space using
GetDiskFreeSpaceEx.

1 // Create a handle to all present devices.

2 hDevInfo = SetupDiGetClassDevs((LPGUID)&GUID_DEVCLASS_DISKDRIVE, 0, 0, DIGCF_PRESENT);

3 // Enumerate through all devices.

4 for (i = 0; SetupDiEnumDeviceInfo(hDevInfo, i, &DeviceInfoData); i++)

5 {

6 // Get the hardware ID and save it into the buffer.

7 SetupDiGetDeviceRegistryProperty(hDevInfo, &DeviceInfoData, SPDRP_HARDWAREID,

8 &dwPropertyRegDataType, (PBYTE)buffer, dwSize, &dwSize)

9 // If the buffer contains any of these strings, the system is most likely a VM.

10 if ((StrStrI(buffer, "vbox") != NULL) ||

11 (StrStrI(buffer, "vmware") != NULL) ||

12 (StrStrI(buffer, "qemu") != NULL) ||

13 (StrStrI(buffer, "virtual") != NULL))

14 {

15 bIsVM = true;

16 break;

17 }

18 }

Listing 2.5: Simpli�ed code example checking the disk's hardware ID using
SetupDiGetDeviceRegistryProperty.

It can also be extracted from the disk if the system was booted from a Virtual Hard
Disk (VHD) container. This is a common �le format for virtual disks. This can
easily be achieved by using the Windows API call IsNativeVhdBoot which returns
true, if the system was booted from a VHD container.

System Memory Based Detection

Apart from the disk size, the system memory size can also be inspected as an indi-
cator for a VM, as it is often kept as small as possible to save hardware costs. It can be
checked using the API call GlobalMemoryStatus, see Listing 2.6.

Another method to check the system memory size is to use any of the WMI queries
in Lines 4 to 6 in Table 2.1 at the end of this section.
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1 // Define a minimum system memory size of 1 GB in bytes.

2 ullMinRam = (1024LL * (1024LL * (1024LL * 1LL)));

3 // Create a buffer structure that is going to hold the information.

4 MEMORYSTATUSEX statex = {0};

5 // Fill the buffer.

6 GlobalMemoryStatusEx(&statex);

7 if (statex.ullTotalPhys < ullMinRam)

8 {

9 bIsVM = true;

10 }

Listing 2.6: Simpli�ed code example checking the system memory size using
GlobalMemoryStatusEx.

CPU Property Based Detection

The most direct and low-level method to see, what CPU the current OS is running
on, is to use the instruction CPUID with any of the following input parameters in
register EAX:

� EAX = 0x0

This returns the highest implemented calling parameter for CPUID on this sys-
tem in EAX. It also returns the CPU's manufacturer ID string in EBX, ECX and
EDX. The last fact can be checked, as it can show the presence of a virtual
system. If the system is running with a Xen hypervisor for example, the re-
turned ID string is �XenVMMXenVMM�. This is also true for most hypervisor
manufacturers.

� EAX = 0x1

This returns general information about the CPU in EAX and its feature �ags in
EBX, ECX and EDX. Relevant for detecting virtual systems is the highest bit in
ECX. This is the hypervisor present �ag. It is set to 1 if the system is running
with a hypervisor.

� EAX = 0x40000000

This is an input parameter reserved for hypervisors. Most hypervisors return
the hypervisor vendor string to this, similar to EAX = 0x0 in EBX, ECX and EDX.

� EAX = 0x80000002, EAX = 0x80000003, EAX = 0x80000004

If supported, this returns the processor brand string in EAX, EBX, ECX and
EDX. To get the full 48 byte string the three input values have to be used
consecutively. A legit Intel CPU for example would return �Intel(R) Core(TM)
i7-6700 CPU @ 3.40GHz�, while the emulator Qemu returns �QEMU Virtual
CPU�.
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� EAX = 0x8FFFFFFF

If CPUID with EAX = 0x0 showed that the current CPU is manufactured by
AMD, in some models this input value is implemented as an easteregg. It
returns the string �IT'S HAMMER TIME� in EAX, EBX, ECX and EDX. This would
somewhat disprove the presence of a VM, though it is only implemented on
AMD's K7 and K8 CPUs. The Bochs emulator for example did not implement
that easteregg as shown by Ferrie [8].

It is also common to assign only one CPU core to the VM to save hardware costs.
This can be checked by malware for example by using the API calls GetSystemInfo
and GetNativeSystemInfo. These functions �ll a SYSTEM_INFO structure of which
the property dwNumberOfProcessors can be accessed. If this is equal to one, it is
an unreliable indicator for a VM. The WMI query in Line 7 of Table 2.1 at the
end of this section can also be used to detect the amount of available CPU cores by
accessing the property NumberOfCores.

Besides this, more CPU features can be analysed to detect a VM. Using the query in
Line 8 of Table 2.1 at the end of this section to check the processor ID, the resulting
value equals to NULL if checked on a VirtualBox system. Therefore, this can be used
as an indicator as well.

The amount of processor cores can also be checked without any API or system call. It
can be achieved with one of the intrinsic functions __readfsdword or __readgsqword
depending on the processor architecture, i. e. if it is a 32-bit or a 64-bit sys-
tem.

An intrinsic function is, in contrast to other functions, not stored in a library, but
built into the compiler. It substitutes the call with a prede�ned set of instruc-
tions. In this case, it is used to read the TIB, which holds information about the
currently active thread on a Windows system. On a 32 bit system it is stored
in the FS register, on a 64 bit system in the GS register respectively. At o�sets
0x30 in FS and 0x60 in GS the pointer to the Process Environment Block (PEB) is
stored.

The PEB is a data structure in Windows that holds various information about the
process and the system environment, which is mostly used by the OS. At o�set
0x64 on a 32 bit system and at o�set 0xB8 on a 64 bit system it holds a pointer
to the value of the �eld NumberOfProcessors, which states the amount of CPU
cores. This concludes to a similarly possible check as aforementioned, see Listing
2.7.
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1 // On a 32 bit system:

2 ulNumberProcessors = __readfsdword(0x30) + 0x64;

3 if (*ulNumberProcessors < 2)

4 {

5 bIsVM = true;

6 }

7 // On a 64 bit system:

8 ulNumberProcessors = __readgsqword(0x60) + 0xB8;

9 if (*ulNumberProcessors < 2)

10 {

11 bIsVM = true;

12 }

Listing 2.7: Simpli�ed code example checking the amount of CPU cores by reading
the PEB.

With API call GetPwrCapabilities, another aspect of the CPU can be checked to
identify a VM. It returns the available power states for the system. Most virtual
systems do not support the power states S1 to S4, which represent sleep and hi-
bernate states. They also usually do not support thermal zones. A code example
showing the usage of GetPwrCapabilities can be found in the following Listing
2.8.

1 GetPwrCapabilities(&powerCaps);

2 // If the system does not support power state S1 to S4 and neither thermal zones, it is most

likely a VM.

3 if (((powerCaps.SystemS1 | powerCaps.SystemS2 | powerCaps.SystemS3 | powerCaps.SystemS4) ==

false) && (powerCaps.ThermalControl == false))

4 {

5 bIsVM = true;

6 }

Listing 2.8: Simpli�ed code example checking the power capabilities of the CPU using
GetPwrCapabilities.

Similar to this, the current temperature and the amount of CPU fans can be checked
using the WMI queries in Lines 9 and 10 of Table 2.1 at the end of this section. This
has been observed to be implemented by the Remote Access Trojan (RAT) malware
GravityRAT by Fortuna [9].

DLL and Firmware Based Detection

It is also possible to check the currently loaded DLLs for any indicators of a sandbox
system like the module sbiedll.dll used by Sandboxie. This can be checked with
the Windows API call GetModuleHandle and a DLL as input. If that does not return
NULL, it means that this DLL is not present in the system. It is a reliable indicator
that the malware is running in a sandbox system.
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GetProcAddress on the other hand can be used to detect the availability of normally
disabled legacy API calls as shown in a blog post [11]. If this is for example used with
kernel32.dll as DLL and wine_get_unix_file_name as function to be searched for
and it returns a valid address, the presence of the Wine emulator is proven. This
can also be used for other legacy and undocumented calls like IsNativeVhdBoot or
NtQueryLicenseValue.

System artefacts can also be found in the �le system. Malware can use the Windows
API call GetFileAttributes as well as the system call NtQueryAttributesFile to
check if certain �les or directories are present in a system, see Listing 2.9.

1 // Check for one of many possible files indicating a VM.

2 dwAttrib = GetFileAttributes("C:\system32\drivers\VBoxMouse.sys");

3 // If file exists and is not a directory, this is running on a VirtualBox VM.

4 if ((dwAttrib != INVALID_FILE_ATTRIBUTES) && (dwAttrib & FILE_ATTRIBUTE_DIRECTORY))

5 {

6 bIsVM = true;

7 }

Listing 2.9: Simpli�ed code example checking the existence of a �le using
GetFileAttributes.

Another method to detect VMs is to search for certain strings in �rmware ta-
bles. This can be achieved with the API calls EnumSystemFirmwareTables and
GetSystemFirmwareTable as shown in the simpli�ed code example in Listing 2.10.

1 // Get all firmware tables and write their names into a buffer.

2 tableSize = EnumSystemFirmwareTables("ACPI", tableNames, 4096);

3 tableCount = tableSize / 4;

4 // Enumerate through all table names

5 for (DWORD i = 0; i < tableCount; i++)

6 {

7 // Try to find certain strings in that firmware table.

8 GetSystemFirmwareTable("ACPI", tableNames[i], firmwareTable, 4096);

9 if ((find_str_in_data("VirtualBox", firmwareTable)

10 || (find_str_in_data("BOCHS", firmwareTable))

11 {

12 bIsVM = true;

13 }

14 }

Listing 2.10: Simpli�ed code example checking �rmware tables for certain strings
using GetSystemFirmwareTable.

Processes and Services Based Detection

It is also possible to check the currently running processes for any that indicate the
presence of a VM. This can be achieved by using the API calls
CreateToolhelp32Snapshot, Process32First and Process32Next as shown in the
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simpli�ed code example in Listing 2.11. If any processes like vboxservice.exe of
VirtualBox or xenservice.exe of Xen are present, it is a reliable indicator for a
VM.

1 // Create snapshot of all running processes and threads.

2 hSnapshot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

3 // Get first process and compare the name. This is necessary before using Process32Next.

4 Process32First(hSnapshot, &pe32);

5 if (StrCmpI(pe32.szExeFile, "xenservice.exe") == 0)

6 {

7 bIsVM = true;

8 }

9 // Enumerate through all other processes and compare the name.

10 while (Process32Next(hSnapshot, &pe32))

11 {

12 if (StrCmpI(pe32.szExeFile, "xenservice.exe") == 0)

13 {

14 bIsVM = true;

15 break;

16 }

17 }

Listing 2.11: Simpli�ed code example checking currently running processes for a Xen
speci�c process using CreateToolhelp32Snapshot.

Analysing the currently active processes can also be achieved with the WMI query in
Line 11 of Table 2.1 at the end of this section. This was was also found by Hund in
a malware sample utilising Microsoft Word macros [13].

Besides processes, also the currently registered services can be checked by using the
API calls OpenSCManager and EnumServicesStatus. The returned array of services
can be analysed for any strings that indicate a VM like for example �VBoxSF� for
VirtualBox or �vmmemctl� for VMWare.

Registry Key Based Detection

The general existence or the value of certain registry keys can also be indicators
of a VM. This can be achieved with the use of the API calls RegOpenKey and
RegQueryValue or respectively with the system calls NtOpenKey and NtQueryValueKey,
see Listing 2.12.

Miscellaneous Detections

It is also possible to check the names of currently existing windows using the API
call FindWindow. If a window with class �VBoxTrayToolWndClass� or with name
�VBoxTrayToolWnd� can be found, it is a reliable indicator for a VirtualBox VM.
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1 // Check if key exists and can be opened. If so, this is a VM.

2 if (RegOpenKeyEx(HKEY_LOCAL_MACHINE, "HARDWARE\\ACPI\\DSDT\\VBOX__", NULL, KEY_READ, &

hkResult) == ERROR_SUCCESS)

3 {

4 bIsVM = true;

5 }

6 // Open key and inspect value. If it contains "VBOX", this is a VM.

7 RegOpenKeyEx(HKEY_LOCAL_MACHINE, "HARDWARE\\Description\\System", NULL, KEY_READ, &hkResult);

8 RegQueryValueEx(hkResult, "SystemBiosVersion", NULL, NULL, lpData, &cbData);

9 if (StrStrI(lpData, "VBOX") != NULL)

10 {

11 bIsVM = true;

12 }

Listing 2.12: Simpli�ed code example checking registry keys and values using
RegOpenKeyEx and RegQueryValueEx.

The undocumented API call NtQueryLicenseValue with �Kernel-VMDetection-
Private� as input in the parameter LicenseValue is a VM detection method built into
Windows. If this returns anything else but zero, a VM is detected.

Besides that, malware can use the WMI queries in Lines 12 to 15 of Table 2.1 to
analyse the probability of the presence of a VM by analysing the system log, the
Basic Input/Output System (BIOS) serial number and the model and manufacturer
information found in class Win32_ComputerSystem.

The path of the executable �le of the current process can also be checked using the
Windows API function GetModuleFileName with NULL as handle input. Analysis
systems sometimes rename the executable of the malware or have speci�c �le paths
inside the VM. If this contains any strings like for example �sandbox�, �virus� or even
the hash value of its own binary, the malware can detect this and react accordingly.
Strictly speaking, this is not only a method for VM detection, but it can generally
detect dynamic analysis systems. In most cases though, as described in Section 2.1,
these employ VMs.



Table 2.1: WMI queries described in Section 2.4.1. Property denotes which property has to be inspected. Check denotes which check has to be
performed to identify the possible presence of a VM.

# Query � SELECT * FROM ... Property Check

Network and Device Based Detection

1 Win32_NetworkAdapterConfiguration MACAddress Any MAC addresses that indicate a VM?

2 Win32_PnPEntity DeviceId Any devices that indicate a VM?

Disk Property Based Detection

3 Win32_LogicalDisk Size
Disk size too small
for a non-virtualised system?

System Memory Based Detection

4 Win32_MemoryArray
EndingAddress System memory size too small

for a non-virtualised system?
5 Win32_MemoryDevice

6 Win32_PhysicalMemory Capacity

CPU Property Based Detection

7 Win32_Processor NumberOfCores Equals to 1?

8 Win32_Processor ProcessorID Holds the value NULL?

9 MSAcpi_ThermalZoneTemperature CurrentTemperature Equals to zero?

10 Win32_Fan � Returns a class with zero fans?

Processes and Services Based Detection

11 Win32_Process Name Any processes that indicate a VM?

Miscellaneous Detections

12
Win32_NTEventlogFile

WHERE FileName = 'System'
Sources

If the log is not empty, check for
sources like �vboxvideo� or �VBoxVideoW8�.

13 Win32_BIOS SerialNumber Values like �VMWare� or �Xen�?

14
Win32_ComputerSystem

Model Values like �HVM domU�?
15 Manufacturer Values like �innotek GmbH�?
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2.4.2 Timing Attacks

Besides directly accessing system artefacts as described in the previous section, the
timing di�erences between a physical and a virtual machine when using certain func-
tions and instructions can be used to detect the latter. But also the fact that analysis
systems often use only a limited runtime for each sample and that this runtime is
kept as low as possible can be abused. This is done to be able to analyse more
samples in a given time period. Malware can stall the execution of malicious code
to exceed the runtime in analysis systems. This does not a�ect their e�ectiveness on
a real victim's system though, as these are often kept alive much longer, but their
malicious intent can be hidden from analysis systems that way. Methods to achieve
these timing attacks are described in this section.

Timing attacks also have low- and high-level approaches similar to detecting sys-
tem artefacts. The instruction RDTSC can be used to measure the current time.
This returns the CPU cycles passed since start of the system. With two consecu-
tively issued instructions the time used for anything in between can be calculated.
This is especially interesting for instructions that cause the VM to hand over the
control to the hypervisor with a VM exit. This costs more time than when ex-
ecuted in a non-virtualised system which does not cause a VM exit. A code ex-
ample showing this method with the instruction CPUID can be found in Listing
2.13.

1 // Measure elapsed CPU cycles before and after usage of possible VM exit with CPUID using

intrinsic functions.

2 tsc1 = __rdtsc();

3 __cpuid(cpuInfo, 0);

4 tsc2 = __rdtsc();

5 // If CPUID took more than 1000 CPU cycles, a VM exit was most probably caused, what means

that this is running on a VM

6 if (tsc2 - tsc1 > 1000)

7 {

8 bIsVM = true;

9 }

Listing 2.13: Simpli�ed code example demonstrating the use of RDTSC to measure
time caused by a possible VM exit.

It has also been observed that the ransomware Locky uses a similar method with the
two API calls GetProcessHeap and CloseHandle [10]. On a non-virtualised system
CloseHandle should be at least 10 times faster than GetProcessHeap. On a VM
this ratio is reversed. It might take at least 10 times longer because of the way the
TIB is virtualised. Locky uses this to detect a virtual environment as shown in the
code example in Listing 2.14. This method is not completely reliable as it sometimes
yields false positives, meaning it sometimes declares non-virtualised systems as VMs.
Locky's developers tried to mitigate that at least by a small portion by performing
this test ten times consecutively and only accepting the positive result, if it was
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returned every time. False positives are not highly critical to this type of malware
though, as its developers distribute it as much as possible. It would be more desirable
to stagger the analysis as much as possible rather than losing a few potential victims
of the ransomware.

1 tsc1 = __rdtsc();

2 GetProcessHeap();

3 tsc2 = __rdtsc();

4 CloseHandle(0);

5 tsc3 = __rdtsc();

6 // If <time taken by CloseHandle> is at least ten times bigger than <time taken by

GetProcessHeap>, this is most probably running on a VM.

7 if (tsc3 - tsc2) / (tsc2 - tsc1) > 10)

8 {

9 bIsVM = true;

10 }

Listing 2.14: Simpli�ed code example comparing the cycles taken by
GetProcessHeap and CloseHandle using RDTSC.

Sometimes analysis systems can try to circumvent long delays caused by malware by
forcing the continuation of the execution. This can for example be achieved by re-
turning earlier than expected from the use of the API call Sleep. Malware can try to
detect these di�erences to identify an analysis system by inspecting the cycles passed
with RDTSC. If the calculated amount of cycles does not �t the expected delay time,
the altered behaviour is detected. Instead of RDTSC the API call GetTickCount can
be used in the same manner. This of course only works if RDTSC's or GetTickCount's
return values are not altered as well.

If the Sleep function was altered by reducing the time to wait, it is possible to still
create a long delay by using multiple short Sleeps consecutively in a loop. This is
also possible with any other function that takes up some computation time. This of
course can be countered again by the analysis system with various methods altering
the original control �ow of the malware, but this would exceed the scope of this
thesis.

Developers of analysis systems can also try to harden their analysis system against
timing attacks by making certain API calls for creating delays not available or change
their behaviour. This in turn can be checked by malware. The VM detection
demonstration tool al-khaser checks the availability of the undocumented function
NtDelayExecution. If this returns a negative result, the malware can assume it is
running inside an analysis system. al-khaser also tries to create timers using both
SetTimer and timeSetEvent. If these API calls return NULL as ID numbers for the
timers, the malware can assume the functionality is suppressed. Malware can also
create an event that can be waited for using the API call CreateEvent. If this returns
NULL, the function was most probably altered.
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Similarly, it is also possible to create timers using CreateWaitableTimer with the
corresponding functions SetWaitableTimer and WaitForSingleObject. Also
CreateTimerQueue with CreateTimerQueueTimer can be used. If any of those func-
tions behave di�erently than expected, the malware can assume it is being dynami-
cally analysed. But if any of the aforementioned functions did work in their intended
way, the malware can freely create delays at the beginning of the execution to circum-
vent its analysis completely with its often short execution time.

Another possibility to create a delay is to send an Internet Control Message Protocol
(ICMP) echo request using the API call IcmpSendEcho as observed by Cisco's Talos
Intelligence Group [3]. For this �rst a handle has to be created using IcmpCreateFile.
If this returns an error, it can be assumed the function has been blocked by an
analysis system. But if it works, the echo request can then be sent and a time-
out can be speci�ed. The function waits either for a response or for the time
speci�ed to run out. With using an Internet Protocol (IP) address that never re-
sponds, the malware waits similarly to the aforementioned functions to create a
delay.

2.4.3 Reverse Turing Tests

Malware can also perform tests to check if an actual human is using the system it is
running on. This section describes various checks to achieve this. One simple method
is to analyse how long the system has already been running. In automated analysis
systems a VM is often booted with the malware starting as soon as possible. After
the analysis, the system's state is usually reverted and the system is reset to fall
back onto a clean state. The API function GetTickCount provides functionality to
check the time since boot. The malware can for example check, if the returned time
is greater than twelve minutes and only then execute its malicious code as pa�sh
demonstrates in its implementation.

It can also check if the current user name is something generic or obvious like �mal-
ware� or �virus� by utilising the Windows API function GetUserName. Malware can
also use the function GetCursorPos. This returns the current position of the cursor.
By doing this consecutively with a delay in between, it can check if the mouse is
moving at all or if it always rests in the same position, which would be an indicator
for an automated system.

The possibilities for these checks are manifold and dependent on the creativity of the
malware developer. In contrast to other checks, which depend on the design of virtual
systems, checks utilising reverse turing tests are based on the often chaotic human
behaviour. This generates way more di�erent indicators. However these indicators
are not as reliable as the ones based on implementation details. Possible checks
are �le names, contents of documents or images in the user's folder, the con�gured
desktop wallpaper or the last modi�ed date on �les.





3 Design and Implementation

This chapter describes the setting of the technical environment for this thesis. Firstly,
in Section 3.1 the general design goals that have to be achieved by the implementation
are described. Required assumptions and de�nitions are then discussed in Section 3.2.
The methods monitored by the implemented analysis system and their classi�cation
are shown in Section 3.3. Afterwards, the general technical software environment in
which the analysis system is implemented is described in Section 3.4. Carried out
modi�cations of the hypervisor are presented in Section 3.5. Similarly all changes
made to the con�guration of the VMI implementation VMIProgram are discussed in
Section 3.6. Also in Section 3.7 the custom tool for analysing the raw data created
by the analysis system is introduced. Lastly, the implementation of a VM detection
sample with known source code that is needed for evaluation purposes is discussed
in Section 3.8.

3.1 Design Goals

The overall goal of this thesis is to analyse the prevalence of VM detection methods
using dynamic malware analysis relying on VMI. To achieve this, it is necessary to
employ automated execution and analysis of samples.

Furthermore, to achieve representative results, it has to be possible to execute and
analyse a high amount of samples in a given timespan. Therefore, it is essential for
this implementation to o�er scalability. The more resources are utilised for the analy-
sis, the higher the amount of analysed samples should be.

Also the implementation is required to generate correct, comparable and determin-
istic results. This is necessary to create a statistical overview of the VM detection
methods used and its prevalence.

3.2 Assumptions and De�nitions

For this thesis it is assumed that the employed components of the do not have any se-
curity issues, which would yield the possibility for malware to escape the environment
of the VM. Otherwise, this violates the design goals of correctness and determinism.
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It could manipulate the results of the analysis. In addition, it is assumed that every
analysed sample is executed on a clean system.

Furthermore, it is assumed that the employed VMI implementation VMIProgram
is secure and functions without errors. It can detect any API calls and system
calls that are issued by the sample and its child processes. Also it is assumed that
any component that is used for the implementation of the environment described in
Section 3.7 works as intended.

The aforementioned assumptions are necessary in achieving the goals of correctness,
comparability and determinism as stated in Section 3.1. Furthermore, any analysed
binary will be referred to as sample without regard of its potential malicious or benign
background. All aspects of a sample that indicate that it uses any kind of method
to detect a virtual system is de�ned as an indicator.

Also only simpli�ed names for API calls are noted throughout the thesis and the
several su�xes are omitted, as there sometimes exist di�erent variations of the calls,
for example CreateEventA, CreateEventExA, CreateEventW and CreateEventExW.
A and W denote di�erent string encodings and Ex means that the function call is
extended with additional arguments. In all cases this is not important to our analysis
and all di�erent variations are traced.

3.3 Monitored Methods and Classi�cation

All indicators have to be classi�ed into di�erent degrees of obviousness to create
comparable results. These are de�ned as strong, moderate and weak. A table with
all monitored indicators and their regarding degree can be found in Table 3.1. A
complete overview with full lists of monitored input values can be found in Table
B.1 in the appendix.

Some methods, like querying the value of a registry key, where the queried value
name contains �VBox� or �VMWare� as sub-string are obviously used to detect a
VM. Others, like retrieving the amount of milliseconds passed since the system was
started, can be used for VM detection. But calls like this are more commonly used
for other reasons like simple time checks.

As a general approach for classi�cation of the obviousness, the following aspects are
important. If an indicator shows any direct reference to a hypervisor manufacturer,
it is classi�ed as strong. This could be obvious sub-strings of input values or system
artefacts that can be attributed to a hypervisor, like the network type of VirtualBox'
shared folders. If an indicator accesses something that can be used for VM detection,
but it is unclear whether any conclusions are drawn from its return value, it is only
considered as moderate. An example for this is accessing the system's �rmware table.
If the indicator can only be used for VM detection when executed in a speci�c way,
like consecutively calling a function, but is not accessing any clear system artefacts,
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it is considered weak. Examples for this are using GetTickCount to measure the
time taken for certain actions or using CreateEvent to create an object that can
be waited for with WaitForSingleObject. This is due to the fact that the analysis
system of this thesis can not di�erentiate between the special and any other use of
these functions. It does not fully analyse the control �ow of the sample. Also if the
probability is high that the indicator is used for a di�erent reason that VM detection,
like checking the disk size, which is often done by normal software installers, it is
considered as weak.

If any timing attack related calls are used, the minimum delay time for declaring it
as an analysis evasion method with moderate obviousness is de�ned as �ve minutes.
This is presumably long enough to stall some dynamic analysis systems. All times-
pans shorter than this are only considered as a weak indicator. It should be noted
though that this hard limit is not very reliable since it is not based on any studies
regarding the common analysis time in dynamic malware analysis systems. It is also
problematic that there could be benign reasons for long delays that are not related
to VM detection or analysis evasion.

One special case is monitored. As described in Section 2.4.2, Locky tries to de-
tect the presence of a VM by comparing the execution time of the two API calls
GetProcessHeap and CloseHandle. It measures the timing di�erences using the in-
struction RDTSC. It is not possible to implement tracing of the latter, this is further
discussed in Section 3.5. Therefore, the only possible way to detect this method
is to detect the direct consecutive use of the two API calls. This unfortunately
yields a relatively high probability for false positives. It could be a complete co-
incidence that this situation occurs. Therefore, it is only considered a moderate
indicator.

Finally, certain methods described in Section 2.4 can not be monitored due to tech-
nical limitations of the approach and overcoming these are out of the scope of this
thesis which is further discussed in Sections 3.5 and 4.1.

3.4 Target Software Environment

For this work the dynamic malware analysis environment of G DATA Software AG is
used. Due to compatibility limitations with other systems, Microsoft's Windows 10
Version 1511 is used as guest OS on the virtual machines. The hypervisor Xen is
employed in version 4.6.1. This relatively old version is necessary with the LibVMI

library version 0.12 used by G DATA's VMIProgram. The latter is the component
that implements the VMI functionality to trace API calls and system calls during
execution of malware samples. Furthermore multiple servers can be managed by the
dynamic malware analysis environment simultaneously. This fact contributes to the
goal of scalability of the analysis.



Table 3.1: Obviousness for all monitored methods. If an indicator is de�ned with an input value in Table B.1, the obviousness degree stated here
is only applicable when these input values are found. If multiple degrees are de�ned for one method, the correct degree is also de�ned
by the corresponding input parameters.

Indicator Obviousness

API Calls

CreateEvent �

CreateFile +/ �

CreateTimerQueue �

CreateTimerQueueTimer �

CreateToolhelp32Snapshot �

CreateWaitableTimer �

DeviceIoControl �

EnumServicesStatus �

EnumSystemFirmwareTables �

FindWindow +

GetAdaptersAddresses �

GetAdaptersInfo �

GetCursorPos �

GetDiskFreeSpace �

GetFileAttributes +

GetModuleFileName �

GetModuleHandle +

GetNativeSystemInfo �

Indicator Obviousness

GetPwrCapabilities �

GetSystemFirmwareTable �

GetSystemInfo �

GetTickCount �

GetUserName �

GlobalMemoryStatus �

Icmp6CreateFile �

Icmp6SendEcho2 �

IcmpCreateFile �

IcmpSendEcho �

IcmpSendEcho2 �

IsNativeVhdBoot +

IWbemServices::ExecQuery �

NtDelayExecution �

NtQueryLicenseValue +

OpenSCManager �

Process32First �

Process32Next �

RegOpenKey +/ �

Indicator Obviousness

RegQueryValue +/ �

SetTimer �

SetWaitableTimer �

SetupDiGetDeviceRegistryProperty �

Sleep �

timeSetEvent �

WaitForSingleObject �

WNetGetProviderName +

System Calls

NtCreateFile +/ �

NtDeviceIoControlFile �

NtOpenKey +/ �

NtQueryValueKey �

NtQueryAttributesFile +

Instructions

CPUID +/ �/ �

Specials

GetProcessHeap & CloseHandle �

+ : strong indicator � : moderate indicator � : weak indicator
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It would be possible to update the guest OS's version if needed. Though there
are potential compatibility issues with the used LibVMI version. Resolving these
would have exceeded the scope of this thesis as it also is not speci�cally neces-
sary.

The implementation employs the INetSim service that simulates commonly used
network services for the samples, as they are not granted access to the internet. This
service always responds with simple messages to all requests from various protocols
like HTTPS, SMTP, FTP and many more.

Furthermore, with every sample a new VM is started with the identical initial state.
After a prede�ned time the execution is aborted and the resulting data is collected.
This setup and the INetSim service help reaching the goals of correctness, compara-
bility and determinism.

The analysis of the resulting tracing data from the dynamic analysis environment
is performed by an application developed for this thesis using the .NET framework
4.7.2. All functionality can also easily be ported to .NET Core and is developed
using parallel execution of multiple threads. Therefore the goal of portability and
scalability of this aspect is ful�lled.

3.5 Modi�cations to the Hypervisor

As stated in Section 2.4, the instructions CPUID and RDTSC can be used to detect VMs
as these instructions cause a VM exit. This yields the possibility for the hypervisor to
trace these instructions, which is not yet implemented in VMIProgram. The simplest
approach to enable this tracing is to modify Xen's sourcecode. The modi�ed code
for CPUID can be found in Listing 3.1. In this case, it reacts whenever the VM
exit handler detects the usage of CPUID with any relevant input values. It outputs
the following into Xen's kernel log: the used instruction, a timestamp, the ID of
the VM, the input register value and the corresponding CR3 value. This is then
evaluated in the analysis. The CR3 value in combination with the VM-ID enables
correlating processes to issued instructions. After printing, the original handling of
the instruction is continued.

Tracing RDTSC is implemented similarly as can be seen in Listing 3.2. In this case
also the VM exit handler was modi�ed to print information about the usage of the
instruction into Xen's kernel log.

This log is then read by the analysis environment and added to the results. Unfortu-
nately the output of the RDTSC tracing �lls the bu�er of Xen's kernel log faster than
it can be read, because the instruction is traced for every process of the VM. This
results in an output approximately every ten microseconds. Even when the bu�er's
size is increased as much as possible, the log can not be read and cleared in time
before new messages overwrite old ones.
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1 case EXIT_REASON_CPUID:

2 + switch ( regs->eax )

3 + {

4 + case 0x0:

5 + case 0x1:

6 + case 0x40000000:

7 + case 0x80000000:

8 + case 0x80000001:

9 + case 0x80000002:

10 + case 0x80000003:

11 + case 0x80000004:

12 + case 0x8FFFFFFF:

13 + printk(XENLOG_INFO "vmx_CPUID: TIME=%015ld ID=%05u EAX=0x%lX CR3=0x%lX .\n", NOW()

, (unsigned int)v->domain->domain_id, regs->eax, v->arch.hvm_vcpu.hw_cr[3]);

14 + break;

15 + default:

16 + break;

17 + }

18 is_pvh_vcpu(v) ? pv_cpuid(regs) : vmx_do_cpuid(regs);

19 update_guest_eip(); /* Safe: CPUID */

20 break;

Listing 3.1: Added code to Xen to trace the usage of CPUID. Lines starting with a +

have been added.

1 case EXIT_REASON_RDTSC:

2 + printk(XENLOG_INFO "vmx_RDTSC: TIME=%015ld ID=%05u CR3=0x%lX .\n", NOW(), (unsigned

int)v->domain->domain_id, v->arch.hvm_vcpu.hw_cr[3]);

3 update_guest_eip(); /* Safe: RDTSC, RDTSCP */

4 hvm_rdtsc_intercept(regs);

5 break;

Listing 3.2: Added code to Xen to trace the usage of RDTSC. Lines starting with a +

have been added.

A possibility to circumvent this would be to limit the output only to processes that
are monitored by VMIProgram. However this is out of scope of this thesis due to
the complexity of Xen. Consequently, the code in Listing 3.2 used to trace RDTSC

is omitted. CPUID is used far less frequently so that its tracing can be performed as
described as above.

3.6 Con�guration of VMIProgram

The VMIProgram traces the use of all API calls as described in Section 2.3. It
registers which function is used by inspecting the called address. This is done with a
database that has been created by analysing the exported functions of the DLLs of
the guest OS. However the call IWbemLocator::ExecQuery that is used to execute
WMI queries as described in Section 2.4.1, is not a named exported function and
therefore is not stored in that database. This has been revealed by testing with a
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known sample. As VMIProgram outputs the address in that case, it is possible to
add it manually to the database and trace the function.

VMIProgram also de�nes of which functions the input parameters are to be extracted
with a con�guration �le. Here all data types have to be de�ned. All functions that
are described in Section 3.3 have to be con�gured here.

3.7 VM Detection Indicator Analysis

VMIProgram and the modi�ed Xen generate a raw trace of API calls, system calls
and CPUID instructions. This raw data is �ltered for the prede�ned indicators de-
scribed in Section 3.3. This is achieved by scanning the text �les for the func-
tion name. If that is present the de�nition of the indicator is important. Either
the plain use of the call implies possible VM detection or the input parameters
have to be checked. In the case of Locky's method utilising the timing di�er-
ences between the calls GetProcessHeap and CloseHandle as described in Section
2.4.2, the consecutive use of those two calls has also to be logged as an indica-
tor.

After the �les are analysed, the results are then summarised, showing the prevalence
of each method and describing which sample used which methods to potentially
detect a VM.

3.8 Custom VM Detection Sample

For evaluation and testing purposes, a sample with known behaviour that performs
VM detection is necessary. With this it is possible to identify false negative results.
A sample performing all methods described in Section 2.4 has been developed by ex-
tending the VM detection demonstration tool al-khaser.





4 Evaluation

This chapter evaluates the results with respect to correctness. Section 4.1 introduces
limitations uncovered during this work. Furthermore the hardware environment is
described in Section 4.2. Tests with a known sample, benign samples and samples
known to utilise VM detection have been carried out. The results of these tests are
evaluated in Sections 4.3, 4.6 and 4.7. The selection of the samples for these tests is
described in Section 4.4. Also the most e�cient runtime for the analysis of each sam-
ple is evaluated in Section 4.5. Lastly the results of testing with a big set of randomly
selected, current samples is discussed in Section 4.8.

4.1 Known Limitations

To analyse the prevalence of VM detection methods, a VMI implementation was
used as described in Sections 2.3 and 3.4. This has the capability of tracing API
calls and system calls thoroughly. Its design however has some limitations that are
discussed in this section.

As described in Section 2.1.4, tracing of CPU-instructions has been performed in
other works by either modifying the kernel to employ a debugger or by statically
analysing the binary and comparing this trace to a dynamic behaviour trace. These
approaches created a reliable instruction trace that could for example be searched
for methods that use the VPCEXT instruction. The employed VMI implementation
VMIProgram however is not capable of tracing instructions at all. The only traced
instruction in this thesis is CPUID, implemented by modifying the Xen hypervisor as
CPUID causes VM exits. RDTSC could not be monitored, even though it also causes
VM exits, as it was not feasible to implement this in the scope of this thesis, see
Sections 2.2.2 and 3.5.

Due to this fact, all VM detection methods that employ other instructions can not
be detected. These are mostly low-level approaches as described in Section 2.4, for
example the methods that utilise the IDT, LDT and GDT. Also the VMWare I/O
port method, the usage of the VPCEXT instruction and the analysis of the PEB using
the FS and GS registers will go unnoticed.

Furthermore, it is also not possible to monitor any VM detection methods that are
utilising process injection to perform their actions within another process. Due to a
limitation of VMIProgram, the process injected into would not be monitored. Only
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the process of the analysed sample and its children are monitored. Therefore, a sam-
ple employing methods like this is falsely classi�ed as one that does not perform VM
detection at all, producing false negative results to some extent.

Another limitation is that only the plain usage of API calls, system calls and the
CPUID instruction is traced. The analysis system only checks the interaction with the
OS, but does not inspect code residing purely in the sample's code region. It does not
detect the interaction with the return value of the methods like string comparisons.
Therefore, it is often inconclusive if a call to a monitored function is actually used for
VM detection. This concludes that only the strong indicators can e�ectively issue
a statement about the usage of VM detection. All other indicators only give a hint
about the degree of probability of VM detection.

Furthermore, even though VMIProgram detects all API and system calls issued
by an analysed sample, the analysis of the resulting trace can only search for the
previously known and de�ned VM detection methods as described in Section 3.3.
Therefore, it is out of scope of this thesis to �nd usages of new methods or those
that have been overlooked when con�guring VMIProgram. It rather analyses the
prevalence of already known methods. Unfortunately as stated for example in Section
2.4.3, there certainly exist a lot of possibilities to employ VM detection that have
not yet been found and are completely dependant on the creativity of the malware
developer.

4.2 Hardware Environment

The implementation described in Chapter 3 facilitates scalability. It is employed on
four di�erent servers to increase the amount of samples that can be analysed in a
given timespan. Those servers are provided by G DATA Software AG and only di�er
in the CPU speci�cations described in Table 4.1. Otherwise, all servers are equipped
with 12 Double Data Rate 3 (DDR3) Dual In-line Memory Modules (DIMMs) of
Random Access Memory (RAM) with a total size of 64 GigaByte (GB) and a speed
of 1.333 GigaHertz (GHz).

The di�erent processors most certainly do not a�ect the analysis in a way that is
relevant to this thesis, as they are all Intel processors facilitating the Intel VT for
virtualisation. This enables the use of VMX for all systems. On every server one
core is reserved for Domain0, as this is the privileged host VM on Xen systems. Xen
refers to its VMs as domains and on Domain0 of all employed servers is the dynamic
malware analysis environment implemented. The other cores are used for the VMs
needed for the analysis, one core for each VM. This results in a total amount of 36
simultaneously running VMs.
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Table 4.1: Di�erences in CPU speci�cations of the four used servers.

CPU

Server Type Amount of Cores Max Turbo Frequency

0 Intel® Xeon® X5670 12 3.333 GHz

1 Intel® Xeon® L5520 8 2.48 GHz

2 Intel® Xeon® L5520 8 2.48 GHz

3 Intel® Xeon® X5650 12 3.06 GHz

4.3 Validation with a Known Sample

To validate that the analysis yields no false negative detection results, it is tested with
a sample of which the source code is known. This sample is based on the VM detec-
tion demonstration tool al-khaser. Additionally, it is extended with all methods de-
scribed in Section 2.4 that had not yet been implemented.

The runtime of the analysis was increased as much as necessary to detect all delays
created with function calls, because the analysis system does not modify any delays.
All methods described in Section 3.3 were found with the analysis. The following
methods were not found due to the limitations described in Section 4.1:

� Methods detecting di�erences in returned addresses from the instructions SIDT,
SLDT, SGDT and STR.

� Communication with VMWare's I/O port.

� Analysis of the response to VirtualPC's undocumented VPCEXT instruction.

� Evaluation of the amount of processor cores by inspecting the PEB using the
instruction __readgsword.

� Analysis of the time taken for the CPUID instruction using the RDTSC instruction.

These are the only false negative results of this validation which was expected due
to the aforementioned reasons.

4.4 Selection of Samples

To select samples to be used in this thesis, the following steps were performed. The
goal was to gather samples as recent as possible while still having a certain amount
of randomness in the selection. For this, all samples that G DATA received from
their various input sources in the timespan between the 27.06.2019 at 00:00 AM and
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08.07.2019 at 15:30 PM have been selected. These sources are for example G DATA's
business partners but also the samples sent in by their customers. This resulted in
a total of 1,036,965 samples.

For the main analysis a subset of 50,000 samples is selected randomly and is hence-
forth referred to as the main-set. This amount has been chosen to not exceed the
time frame of two weeks. This is based on the runtime of 12 minutes for each sample,
which is determined in Section 4.5.

G DATA themselves perform generic detection of VM detection methods. This is
not done by analysing any API calls but rather by searching for certain strings or
instructions in the sample's process memory right before its execution is �nished. For
this the pattern matching tool YARA developed by VirusTotal is used. Checking
for the results of these memory analyses on all selected samples resulted in a subset
of 1,304 samples that returned a positive result to G DATA's detection and will be
henceforth referred to as vm-detection-set.

For determining the best runtime for the samples a test is performed comparing dif-
ferent runtimes on the same set of samples, as described in Section 4.5. This set is cre-
ated by selecting 100 random samples of the main-set and 100 di�erent random sam-
ples of the vm-detection-set. This resulted in a set of 200 samples with unique hash
values and will henceforth be referred to as runtime-set.

Also for evaluating the amount of false positive results a set of benign samples is
selected. These are samples that are known to have no malicious intention. G DATA
de�ne this using the certi�cates created by trusted manufacturers and using sources
like AV-TEST, which sell these samples. For this 100,000 samples received in the
timespan between 08.07.2019 00:00 AM and 10.07.2019 04:45 AM were selected. For
the test a random subset of 200 samples is then taken, which will from now on be
referred to as benign-set.

4.5 Evaluating the Most E�cient Sample Runtime

The analysis system executes each sample for a speci�c timespan. When this runs
out, the analysis is stopped and the created results are collected. Generally, it
is expected that any VM detection methods are executed at the beginning of the
sample run, assuming the whole run is not hold up by the sample with a de-
lay.

Ideally, a run should execute as long as the sample performs any actions, but it
is impossible to know when the sample is �nished. This would require to solve
the halting problem. On one hand, the higher the runtime, the less samples can
be analysed in a given timespan. But on the other hand, the higher the runtime,
the higher is the probability to �nd more VM detection methods used by the sam-
ple.
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It is desirable to analyse as many samples as possible. Therefore a compromise has
to be found. To determine the most suitable runtime, a test comparing the results of
di�erent timespans on the same set of samples is conducted. For this the 200 samples
from the runtime-set was used. When running the test it showed that 11 samples
were not possible to execute. This was probably due to those being corrupted or not
compatible �le types like PDF or DOCX.

For this test the runtimes 3 minutes, 6 minutes, 9 minutes, 12 minutes and 15 minutes
per sample have been selected. Only strong indicators reliably show the intention
of VM detection. Therefore, only these are taken into account for comparing the
results. Those are displayed in Figure 4.1. As can be seen in it, there is no big
di�erence between the �ve con�gurations, but 12 and 15 minutes both yielded the
best results. It should be noted that the test with 6 minutes showed fairly better
results than the test with 9 minutes runtime. This indicates that the analysis system
might not be perfectly deterministic, but this could also be due to the chaotic nature
of malware. It is possible that the samples behave randomly depending on some
minor aspects of the system. It seems that two samples in the 9-minute-test did not
execute in the same way as they did in the 6-minute-test.
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Figure 4.1: The total amount of samples from the runtime test-set that used at least
one, two or three di�erent strong indicators.

Another aspect of quality for this test run is the overall amount of indicators found,
disregarding the level of obviousness. In Table 4.2, the di�erent amounts of indicators
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found with each test run are shown. The same di�erence between 6 and 9 minutes
as can be seen in Figure 4.1 can also be found here. It is possible that some samples
behaved di�erently in the two test runs. Also the 15 minute test run created less
results than the 12 minute test run, which also shows that the samples do not seem
to behave deterministic in every execution.

Table 4.2: The total amounts of di�erent indicators found in all samples of each test
run in the runtime test.

Runtime

in Minutes

Amount of

Found Indicators

15 1249

12 1269

9 1189

6 1197

3 1189

As a conclusion, 12 minutes seem to be the best compromise between somewhat
complete results and a high amount of samples that can be analysed in the scope of
this thesis.

4.6 Validation with Benign Samples

To analyse the false positive rate, �rst, four benign samples have been manually
selected and examined.

� A custom sample that only performs a simple, constant console output and
nothing else, created with C++.

SHA256 value:
4079619f6bfb0d543a19a27a8164392b21b22270ec895d72ced50d90976b2d88

� The Windows calculator with version number 10.0.17134.1 taken from a Win-
dows 10 Version 1803 Build 17134.950 system. It has been manually assured
that this runs on the Windows 10 Version 1511 provided by the VMs without
errors.

SHA256 value:
284674a806bcbe692c76761baaf21327638de0c7135bfb06953648be7d661fbd
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� The installer for the text editor Notepad++ for 32bit x86 systems of version
7.7.1.

SHA256 value:
6787c524b0ac30a698237ffb035f932d7132343671b8fe8f0388ed380d19a51c

� The not customised TeamViewer QuickSupport binary that can be executed
without installing to enable remote access to the graphical user interface of a
system. The binary with version 14.4.2669.0 was used.

SHA256 value:
b2e3946fde991d991ef28c181be540031acc99771347d03e7ac7cdca6992c28f

Apart from the manually selected samples also the 200 samples of the benign-set
were analysed with a runtime of 12 minutes. Ideally no indicator returns a positive
result in any of these samples. This is somewhat unlikely though as is it possible that
VM detection is even performed by benign samples to act di�erently on virtualised
systems. Nonetheless, it should only rarely occur as benign software would usually
want to function similarly on any system it is executed on. As there is no feasible way
to reliably identify samples that do not perform VM detection, this is best possible
way to inspect false positives.

4.6.1 Results of Analysing the Manually Selected Benign Samples

The results of the manually selected samples are discussed in this section. An
overview of all found VM detection methods is given in Table 4.3.

� Custom Sample

As expected, not a single indicator returned a positive result.

� Windows Calculator

Two indicators return positive results: CPUID with the input values 0x0 and
0x1. It is uncertain why the calculator uses this instruction, but as Section
4.8 shows, this is a very common occurrence and might be used for simple
compatibility checks with the CPU.

� Notepad++ Installer

This returned one positive, moderate indicator, the API call
GetModuleFileName with input NULL. This returns the full path to the sample's
binary. It is possible that the installer performs certain checks on itself before
starting the installation. Besides that, the API call GetTickCount and the
instruction CPUID with inputs 0x0 and 0x1 have been found.
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� TeamViewer's QuickSupport binary
This returned two positive moderate indicators, the two API calls
GetModuleFileName with input NULL and GetSystemInfo. Also the weak indi-
cators CreateEvent, GetTickCount and CPUID with inputs 0x0 and 0x1 have
been found. This probably has also been done to perform a self check and for
compatibility reasons.

Table 4.3: Overview of all found VM detection methods when analysing the four
manually selected benign samples.

Indicator
Custom

Sample

Windows

Calculator

Notepad++

Installer

TeamViewer's

QuickSupport

binary

Moderate

GetModuleFileName Ö Ö X X
GetSystemInfo Ö Ö Ö X

Weak

CPUID, EAX = 0x0 Ö X X X
CPUID, EAX = 0x1 Ö X X X

GetTickCount Ö Ö X X
CreateEvent Ö Ö Ö X

X: The indicator is detected. Ö: The indicator is not detected.

These results show that the analysis system does not yield any consistent false pos-
itives. One sample did not show the use of any indicator. Therefore the reason for
the high occurrence of the instruction CPUID described in Section 4.8 is not because
of an error in the system as could be suspected. This validation showed that a sam-
ple that de�nitely does not use this instruction also correctly created only negative
indicators for that instruction.

Also only a few moderate and no strong indicators were found. This shows that the
analysis system yields somewhat reliable results. But it should be noted that this
also shows that moderate and weak indicators might not be reliable for �nding VM
detection.

4.6.2 Results of Analysing the 200 Randomly Selected Benign Samples

The results of analysing the 200 randomly selected samples of the benign-set are
discussed here. Of those only 192 samples were runnable. Only three samples used
at least one strong indicator. One of these three samples is Avast SZFLocker in
version 1.0.189.0, which is a decryptor tool for the ransomware SZFLocker. Also
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the �le search utility called UltraFileSearch Lite in version 3.4.0.13329 used at least
one strong indicator. The remaining sample is the Kaspersky Virus Removal Tool

in version 15.0.19.0. Two of those samples are connected to malware which might
explain the use of VM detection methods. The search tool is opening registry keys
that are typical for the emulator Wine and the hypervisor VirtualBox. Why this is
done is unclear.

In Table B.2 in the appendix a full overview of the distribution of all indicators can
be found. Here, it is obvious that the indicators GetCursorPos, GetModuleFileName,
GetNativeSystemInfo, GetSystemInfo, CreateEvent, CPUID with input values 0x0
and 0x1 and Locky's timing trick are not reliable indicators for samples using VM
detection. These returned positive results in various benign samples, where it should
be unlikely that VM detection is performed. Therefore, these indicators are assumed
to be false positives.

4.7 Validation with VM Detecting Samples

In this section it is tested how well the analysis performs on samples on which
G DATA's memory analysis showed that they have aspects of VM detection. For
this the 1,304 samples of the vm-detection-set have been analysed. It has to be noted
that G DATA's method for analysing the samples is vastly di�erent to the method
used in this work. It is possible that code is analysed that is stored in the memory,
but that has never been and might never be executed in the control �ow of the sample.
While G DATA's analysis shows that the sample has the capability of performing
VM detection methods, this work only detects executed methods. Therefore, it
is expected that some samples do not show any VM detection behaviour even if
G DATA's analysis returned positive results.

Of the 1,304 analysed samples, only 1,287 were executable. The other 17 samples
were either corrupted binaries or not compatible with our analysis system. This is
unexpected, as G DATA's analysis has positive detections for all 1,304 samples. This
means that it was possible to execute the 17 samples in the past. Even with multiple
attempts the samples are consistently not runnable in the implemented analysis
system. The reason for this is unclear, but is also not relevant for the results of this
test.

As before, �rst, we only inspect the usage of strong indicators, as these are the only
reliable indicators for VM detection. These results can be found in Figure 4.2. This
showed that 370 samples used at least one obvious indicator of VM detection, which
are 28.7% of all executable samples. Four samples even used ten di�erent strong
indicators.
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As can be seen here, a signi�cantly higher amount of samples is found to be using
strong indicators in comparison to the test using benign samples. This shows that
the analysis system can successfully identify samples using obvious VM detection
methods.
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Figure 4.2: The amount of samples in the vm-detection-set that used from at least
one up to at least ten di�erent strong indicators.

In Table B.3 in the appendix a complete overview of all found indicators is shown
to display the prevalence of each indicator in the vm-detection-set. Here some ir-
regularities stand out and should be addressed. The methods GetModuleFileName
and CPUID with inputs 0x0 and 0x1 were used by almost every sample. As this is
the vm-detection-set, on one hand it is possible that these methods were actually
used for VM detection. But on the other hand the same results are found in all
other tests. Some other methods were only rarely or not used at all, for example
the API calls IsNativeVhdBoot and NtQueryLicenseValue, which shows that these
might be not reliable or outdated and are therefore not used in current VM detecting
samples.

In Figure 4.3 the distribution of the found strong indicators is depicted. For this
all strong indicators that returned a positive result were taken into account. The
pre�x AC denotes API calls, SC denotes system calls and I denotes instructions. It
should be noted that any system calls that were issued by the corresponding API
calls are ignored for this �gure. This would otherwise distort the ratio between API
calls that utilise system calls and those that do not. It shows that GetProcAddress
is used at least twice as often as any other strong API call. These are mostly
calls using either wine_get_unix_file_name and wine_get_version. It is possible
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but not clear if this might be used more often for benign reasons than for VM
detection.

AC.GetProcAddress

258 - 55,97%
I.CPUID_0x40000000

102 - 22,13%

AC.RegOpenKey

40 - 8,68%

AC.GetModuleHandle

22 - 4,77%

AC.GetFileAttributes

16 - 3,47%

AC.CreateFile

8 - 1,74%

AC.FindWindow

6 - 1,30%

AC.IsNativeVhdBoot

4 - 0,87%

SC.NtQueryAttributesFile

3 - 0,65%

AC.WNetGetProviderName

1 - 0,22%

SC.NtOpenKey

1 - 0,22%

Figure 4.3: The distribution of used strong indicators in the test with the vm-
detection-set.

4.8 Conducting Analysis with Random Samples

Lastly the analysis using the 50,000 samples of the main-set is performed. Of this set,
4,463 samples (8.9 %) were not valid binaries compatible with our analysis system.
As any input from G DATA's sources is tried to be executed on the analysis system
and is not �ltered beforehand, it is possible that either corrupted �les or incompatible
�le type, for example PDF or DOCX, were used. Therefore, only 45,537 samples could
be analysed.

Figure 4.4 shows that 1,263 (2.77 %) of all analysed samples used at least one strong
method of VM detection, while 469 (1.03 %) used at least two strong methods. Also
in Table B.4 in the appendix the overall prevalence of each method can be found. As
stated in Section 4.1, it is hard to say which methods are used for VM detection and
which are not when inspecting the moderate and weak indicators. But the results
show that VM detection is still prevalent in current malware. The high amount of
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moderate indicators suggests that the actual prevalence of VM detection is higher
than found here. Especially, since many low-level methods could not be monitored.
It should also be noted that G DATA's memory analysis only classi�ed 74 samples
of the main-set to be using VM detection methods. Interestingly, our analysis only
found 20 of those samples, while we detected 1.243 di�erent samples using at least
one strong indicator.
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Figure 4.4: The amount of samples from the main-set that used from at least one up
to at least six di�erent strong indicators.

Inspecting the results further in Figure 4.5, it should be noted that, in contrast to the
analysis of the vm-detection-set, the API call GetModuleHandle in 310 samples was
found more frequently than GetProcAddress in 116 samples. In the previous test
GetProcAddress was used about ten times more often than GetModuleHandle. This
could show that the 258 samples from the vm-detection-set using GetProcAddress

were genuinely doing this to detect a VM. The �gure also shows that the most preva-
lent strong VM detection indicator is the use of the instruction CPUID with input
value 0x40000000. This suggests that it is most common to use low-level methods
like CPUID to detect a VM. The relatively high usage of CPUID with input values
0x80000002, 0x80000003 and 0x80000004 in at least 786 samples also supports this
statement, even though these are only moderate indicators.

It should also be noted that neither in the vm-detection-set, nor in the main-set any
usages of NtQueryLicenseValue, IcmpSendEcho, Icmp6SendEcho and
Icmp6CreateFile could be found. This indicates that these methods are only very
rarely used in current malware, if at all. The instruction CPUID with input value
0x8FFFFFFF was also never used, but this is most certainly the case, because our
system is using Intel processors. Malware probably checks with other CPUID input
values like 0x0 beforehand, if the CPU is manufactured by AMD. Only if that is the
case, the AMD easteregg is checked for.
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Figure 4.5: The distribution of used strong indicators in the main-set.

The indicators GetModuleFileName, CreateEvent, GetTickCount or the Locky tim-
ing trick are found in at least 30 % of the samples. It is unlikely that such a great
amount of samples utilise VM detection when other, more reliable indicators are less
present. These methods have also been found to be most certainly false positives, see
Section 4.6. This shows that these indicators, in contrast to previous classi�cations,
are weak.





5 Conclusion

This chapter summarises the found results and discusses conclusions drawn from
them in Section 5.1. In Section 5.2 future work resulting from this thesis is dis-
cussed, approaching possible countermeasures to harden VMs against VM detection.
Another aspect discussed is improving the analysis to create more insightful and
reliable results.

5.1 Summary

This thesis has found that VM detection is still prevalent in current malware. At
least 2.8 % of analysed samples are found to utilise methods that clearly indicate
the use of VM detection. The methodology of this work has shown to have some
limitations and can not identify most low level methods. It can also not deduce the
true intention behind a lot of methods. The true prevalence of VM detection might
be signi�cantly higher. It is likely that malware more often uses low-level than high-
level methods as these are less noisy than obvious API calls in combination with
input values like registry keys attributed to certain hypervisors. Nonetheless, this
work showed that it could be worthwhile to further investigate the usage of VM
detection methods in current malware.

This is interesting as today's computer systems are more and more virtualised with
the rise of cloud computing services like AWS or Microsoft Azure as current market
predictions show [5]. It is reasonable to assume that malware detecting and therefore
evading these would lower their spreading. It is questionable if VM detection will
still be relevant in the future if the growth of cloud and other virtualised systems
further increases.

5.2 Future Work

In this section open questions resulting from this work are discussed. The �rst aspect
is the hardening of virtual systems to decrease transparency of their virtual nature.
It is desirable that malware can not detect the VMs and that their behaviour in
an analysis environment is identical to when they are running in a victim's system.
Secondly, ideas about improving the analysis to create more reliable and insightful
results are described.
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5.2.1 Possible Countermeasures

This thesis showed that some aspects of the system can easily be checked to iden-
tify a VM. These can be very low-level like checking memory addresses of system
information structures. They can also be high-level like checking for the existence of
certain network shares or registry keys.

Some changes with instructions causing VM exits could be handled by the hypervisor.
The return values of CPUID could be altered so that they replicate those of a non-
virtualised system. Also the return values of RDTSC could be changed so that the
time passed seems shorter that it actually was. Although, this would require a
complex implementation as the values need to be determined for every context. All
changes have to be made with caution, because some system aspects rely on true
information about the CPU like the architecture or similar. Changes made here
could create problems with the compatibility of programs running on the system
or even of the OS. It could be possible to only change the return value for the
processes monitored by VMI by inspecting the value of the CR3 register. This would
reduce the risk of creating unforeseen problems with the system when changing these
values.

Similarly it should be investigated if it is possible to hide system artefacts like registry
keys, network devices, MAC addresses or processes by altering these values in the
OS. This also could yield problems in the operation of the system as some parts of
the hypervisor could depend on those system artefacts. As before, VMI could poten-
tially also be employed to only alter the returned values of for example the API call
RegOpenKey or the system call NtOpenKey. These changes could then only be applied
to VM detection methods of the monitored processes.

Also timing attacks could tried to be circumvented by disabling or actively short-
ening delays. This could be problematic to implement without it being noticeable.
Furthermore, it should be tried to create an analysis system that seems as if a human
is actually using it by for example creating real �les with plausible names, automat-
ically moving the cursor to mimic user interaction or having the system's uptime at
a believable amount. Of course, it is very hard to do this perfectly and some aspects
will potentially always be detectable.

5.2.2 Improving the Analysis

This work showed that simply detecting the use of API calls, system calls and in-
structions causing VM exits with their corresponding input values does not provide
very thorough and reliable results. Some improvements should be made for future
analyses.
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When staying with the technical approach of VMI, at �rst all instructions creating
VM exits should be traced. As described in Section 4.1, this work does not provide
the detection of the instruction RDTSC. This would have been too complex for the
scope of this thesis. This should be implemented in future approaches so that all
aspects of possible VM detection can be found.

The analysis could also create a full trace of operations, potentially by including
other methods like static analysis similar to the approach with DSD-Tracer. Using
this to analyse the handling of the return values, it would be clear if malware checks
for certain VM-indicating aspects. It would also be bene�cial to implement a similar
technique to the approach of Comparetti et al's Reanimator to not only analyse
executed but also dormant functionalities [6]. It statically analyses a sample for
previously found, malicious functionalities from other malware samples. Furthermore
a method detecting process injection should be implemented so that malware using
this technique is detected as well and therefore rendering the analysis as complete
as possible.

Additionally, it would be desirable to have a non-virtualised system that is otherwise
identical to the VM to compare the behavioural pro�le of the sample on this system
with the virtualised one, similar to the approach of Lindorfer et al [19]. Using this,
not only prede�ned methods but also yet undiscovered indicators of VM detection
could be found.

Combining all these approaches would create an ideal analysis environment that
could potentially detect any VM detection method. Unfortunately, this is highly
complex as all components have to be synchronized and orchestrated. All compared
systems have to be identical so that the behaviour of the malware is not a�ected by
any aspect of the system and all resulting data need to be stored and analysed. This
would presumably require a lot of computing power.

When analysing malware, the analyst is always at an arms race with the mal-
ware's developers. It is virtually impossible for any side to be completely sure to
either detect and prevent everything or to be fully undetected on a victim's sys-
tem.





A Acronyms

API Application Programming Interface

AWS Amazon Web Services

BIOS Basic Input/Output System

CPU Central Processing Unit

DDR3 Double Data Rate 3

DIMM Dual In-line Memory Module

DLL Dynamic-Link Library

EPT Extended Page Tables

FTP File Transfer Protocol

GB GigaByte

GDT Global Descriptor Table

GDTR GDT Register

GHz GigaHertz

HTTPS Hyper Text Transfer Protocol Secure

ICMP Internet Control Message Protocol

IDT Interrupt Descriptor Table

IDTR IDT Register

IP Internet Protocol

LDT Local Data Table

LDTR LDT Register

MAC Media Address Control

MSR Model Speci�c Register



60 A Acronyms

OS Operating System

PEB Process Environment Block

RAM Random Access Memory

RAT Remote Access Trojan

SMTP Simple Mail Transfer Protocol

SQL Structured Query Language

TIB Thread Information Block

TR Task Register

TSS Task State Segment

VHD Virtual Hard Disk

VM Virtual Machine

VMI Virtual Machine Introspection

VMM Virtual Machine Manager

VMX Virtual Machine Extension

VT Virtualization Technology

WBEM Web-Based Enterprise Management

WMI Windows Management Instrumentation



B Classi�cation and Prevalence of Monitored VM Detection

Methods

Table B.1: Overview of all monitored API calls, system calls and instructions. The �rst column shows the simpli�ed name (without su�xes). The
second column shows the parameters that included to check if the function indicates VM detection. The third column respectively
shows the values that are looked for in said parameters. The last column shows the classi�cation of the method as described in Section
3.3.

Function Parameters Values Obviousness

API Calls

CreateEvent � � weak

CreateFile lpFileName

"VBoxMiniRdrDN", "VBoxGuest",

"VBoxTrayIPC", "HGFS", "vmci"
strong

"\C:", "\PhysicalDrive0" moderate

CreateTimerQueue � � weak

CreateTimerQueueTimer DueTime ≥ 5 minutes moderate

CreateToolhelp32Snapshot dwFlags �ag TH32CS_SNAPPROCESS moderate

CreateWaitableTimer � � weak

DeviceIoControl dwIoControlCode IOCTL_DISK_GET_LENGTH_INFO weak

EnumServicesStatus � � moderate

EnumSystemFirmwareTables � � moderate

FindWindow lpClassName, lpWindowName "VBoxTrayToolWndClass", "VBoxTrayToolWnd" strong

GetAdaptersAddresses � � moderate

GetAdaptersInfo � � moderate

GetCursorPos � � moderate

GetDiskFreeSpace lpDirectoryName, lpRootPathName NULL weak



Function Parameters Values Obviousness

API Calls

GetFileAttributes lpFileName

"VBoxMouse.sys", "VBoxGuest.sys",

"VBoxSF.sys", "VBoxVideo.sys",

"vboxdisp.dll", "vboxhook.dll", "vboxmrxnp.dll",

"vboxogl.dll", "vboxoglarrayspu.dll",

"vboxoglcrutil.dll", "vboxoglerrorspu.dll",

"vboxoglfeedbackspu.dll", "vboxoglpackspu.dll",

"vboxoglpassthroughspu.dll", "vboxservice.exe",

"vboxtray.exe", "VBoxControl.exe",

"virtualbox guest additions", "vmmouse.sys", "vmhgfs.sys",

"vm3dmp.sys", "vmci.sys", "vmhgfs.sys", "vmmemctl.sys",

"vmmouse.sys", "vmrawdsk.sys", "vmusbmouse.sys", "VMWare",

"sample.exe", "malware.exe"

strong

GetModuleFileName hModule NULL moderate

GetModuleHandle lpModuleName

"avghookx.dll", "avghooka.dll", "snxhk.dll", "sbiedll.dll",

"dbghelp.dll", "api_log.dll", "dir_watch.dll", "pstorec.dll",

"vmcheck.dll", "wpespy.dll", "cmdvrt64.dll", "cmdvrt32.dll"

strong

GetNativeSystemInfo � � moderate

GetProcAddress lpProcName
"wine", "IsNativeVhdBoot" strong
"NtQueryLicenseValue" moderate

GetPwrCapabilities � � moderate

GetSystemFirmwareTable � � moderate

GetSystemInfo � � moderate

GetTickCount � � weak

GetUserName � � moderate

GlobalMemoryStatus � � moderate



Function Parameters Values Obviousness

API Calls

Icmp6CreateFile � � weak

Icmp6SendEcho2 Timeout ≥ 5 minutes moderate

IcmpCreateFile � � weak

IcmpSendEcho Timeout ≥ 5 minutes moderate

IcmpSendEcho2 Timeout ≥ 5 minutes moderate

IsNativeVhdBoot � � strong

IWbemServices::ExecQuery strQuery

"Win32_Processor", "Win32_LogicalDisk", "Win32_BIOS"

"Win32_ComputerSystem", "MSAcpi_ThermalZoneTemperature"

"Win32_Fan", "Win32_PnPEntity", "Win32_NetworkAdapterConfiguration"

"Win32_NTEventlogFile", "Win32_NetworkAdapter", "Win32_Process"

"Win32_MemoryArray", "Win32_MemoryDevice", "Win32_PhysicalMemory"

moderate

NtDelayExecution � � moderate

NtQueryLicenseValue LicenseValue "Kernel-VMDetection-Private" strong

OpenSCManager � � moderate

Process32First � � moderate

Process32Next � � moderate



Function Parameters Values Obviousness

API Calls

RegOpenKey lpSubKey

"VirtualBox", "VBox", "Virtual Machine"

"VMware", "Wine"
strong

"\Target Id 0\Logical Unit Id 0"

"SystemBiosVersion", "VideoBiosVersion"

"SystemBiosDate", "SystemManufacturer"

"SystemProductName", "Services\Tcpip\Linkage"

"HARDWARE\Description\System"

"ControlSet001\Control\SystemInformation"

moderate

RegQueryValue lpSubKey,

lpValueName

"VirtualBox", "VBox", "Virtual Machine"

"VMware", "Wine"
strong

"\Target Id 0\Logical Unit Id 0"

"SystemBiosVersion", "VideoBiosVersion"

"SystemBiosDate", "SystemManufacturer"

"SystemProductName", "Services\Tcpip\Linkage"

"HARDWARE\Description\System"

"ControlSet001\Control\SystemInformation"

"Identifier"

moderate

SetTimer uElapse ≥ 5 minutes moderate

SetWaitableTimer lpDueTime ≥ 5 minutes moderate

SetupDiGetDeviceRegistryProperty � � moderate

Sleep dwMilliseconds ≥ 5 minutes moderate

timeSetEvent uDelay ≥ 5 minutes moderate

WaitForSingleObject dwMilliseconds ≥ 5 minutes moderate

WNetGetProviderName dwNetType WNNC_NET_RDR2SAMPLE strong
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System Calls

NtCreateFile ObjectAttributes

"VBoxMiniRdrDN", "VBoxGuest",

"VBoxTrayIPC", "HGFS", "vmci"
strong

"\C:", "\PhysicalDrive0" moderate

NtDeviceIoControlFile dwIoControlCode IOCTL_DISK_GET_LENGTH_INFO weak

NtOpenKey ObjectAttributes

"VirtualBox", "VBox", "Virtual Machine"

"VMware", "Wine"
strong

"\Target Id 0\Logical Unit Id 0"

"SystemBiosVersion", "VideoBiosVersion"

"SystemBiosDate", "SystemManufacturer"

"SystemProductName", "Services\Tcpip\Linkage"

"HARDWARE\Description\System"

"ControlSet001\Control\SystemInformation"

moderate

NtQueryAttributesFile ObjectAttributes

"VBoxMouse.sys", "VBoxGuest.sys",

"VBoxSF.sys", "VBoxVideo.sys",

"vboxdisp.dll", "vboxhook.dll", "vboxmrxnp.dll",

"vboxogl.dll", "vboxoglarrayspu.dll",

"vboxoglcrutil.dll", "vboxoglerrorspu.dll",

"vboxoglfeedbackspu.dll", "vboxoglpackspu.dll",

"vboxoglpassthroughspu.dll", "vboxservice.exe",

"vboxtray.exe", "VBoxControl.exe",

"virtualbox guest additions", "vmmouse.sys", "vmhgfs.sys",

"vm3dmp.sys", "vmci.sys", "vmhgfs.sys", "vmmemctl.sys",

"vmmouse.sys", "vmrawdsk.sys", "vmusbmouse.sys", "VMWare",

"sample.exe", "malware.exe"

strong
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System Calls

NtQueryValueKey ValueName

"SystemBiosVersion", "VideoBiosVersion"

"SystemBiosDate", "SystemManufacturer"

"SystemProductName", "Identifier"

moderate

Instructions

CPUID EAX

0x0 weak
0x1 weak
0x40000000 strong
0x80000002, 0x80000003, 0x80000004 moderate
0x8FFFFFFF strong

Special

GetProcessHeap & CloseHandle � � moderate



Table B.2: Amount of samples in the benign-set that were found to use each individual indicator.

Method # Found Indicators

API Calls: Strong

CreateFile 1 / 0.5%

FindWindow 0 / 0.0%

GetFileAttributes 0 / 0.0%

GetModuleHandle 0 / 0.0%

GetProcAddress 1 / 0.5%

IsNativeVhdBoot 0 / 0.0%

NtQueryLicenseValue 0 / 0.0%

RegOpenKey 0 / 0.0%

RegQueryValue 0 / 0.0%

WNetGetProviderName 0 / 0.0%

API Calls: Moderate

CreateFile 7 / 3.7%

CreateTimerQueueTimer 0 / 0.0%

CreateToolhelp32Snapshot 3 / 1.6%

EnumServicesStatus 0 / 0.0%

EnumSystemFirmwareTables 0 / 0.0%

GetAdaptersAddresses 0 / 0.0%

GetAdaptersInfo 2 / 1.0%

GetCursorPos 37 / 19.3%

GetModuleFileName 137 / 71.4%

GetNativeSystemInfo 47 / 24.5%

GetProcAddress 0 / 0.0%

GetPwrCapabilities 0 / 0.0%

GetSystemFirmwareTable 1 / 0.0%

Method # Found Indicators

GetSystemInfo 57 / 29.7%

GetUserName 7 / 3.79%

GlobalMemoryStatus 16 / 8.3%

IcmpSendEcho 0 / 0.0%

Icmp6SendEcho 0 / 0.0%

IWbemServices::ExecQuery 0 / 0.0%

NtDelayExecution 0 / 0.0%

OpenSCManager 1 / 0.5%

Process32First 3 / 1.6%

Process32Next 3 / 1.6%

RegOpenKey 1 / 0.5%

RegQueryValue 1 / 0.5%

SetTimer 0 / 0.0%

SetWaitableTimer 0 / 0.0%

SetupDiGetDeviceRegistryProperty 0 / 0.0%

Sleep 0 / 0.0%

timeSetEvent 0 / 0.0%

WaitForSingleObject 3 / 1.6%

API Calls: Weak

CreateEvent 58 / 30.2%

CreateTimerQueue 0 / 0.0%

CreateWaitableTimer 1 / 0.5%

DeviceIoControl 0 / 0.0%

GetDiskFreeSpace 0 / 0.0%

GetTickCount 58 / 30.2%

Method # Found Indicators

IcmpCreateFile 0 / 0.0%

Icmp6CreateFile 0 / 0.0%

System Calls: Strong

NtCreateFile 1 / 0.5%

NtOpenKey 1 / 0.5%

NtQueryAttributesFile 0 / 0.0%

NtQueryValueKey 0 / 0.0%

System Calls: Moderate

NtCreateFile 7 / 3.7%

NtOpenKey 3 / 1.6%

NtQueryValueKey 2 / 1.0%

System Calls: Weak

NtDeviceIoControlFile 0 / 0.0%

Instructions: Strong

CPUID � 0x40000000 0 / 0.0%

CPUID � 0x8FFFFFFF 0 / 0.0%

Instructions: Moderate

CPUID � 0x80000002/3/4 8 / 4.2%

Instructions: Weak

CPUID � 0x0 187 / 97.4%

CPUID � 0x1 187 / 97.4%

Specials: Moderate

GetProcessHeap &
72 / 37.0%

CloseHandle



Table B.3: Amount of samples from the vm-detection-set that were found to use each individual indicator.

Method # Found Indicators

API Calls: Strong

CreateFile 8 / 0.6%

FindWindow 6 / 0.5%

GetFileAttributes 16 / 1.2%

GetModuleHandle 22 / 1.7%

GetProcAddress 258 / 20.0%

IsNativeVhdBoot 4 / 0.3%

NtQueryLicenseValue 0 / 0.0%

RegOpenKey 40 / 3.1%

RegQueryValue 0 / 0.0%

WNetGetProviderName 1 / 0.1%

API Calls: Moderate

CreateFile 279 / 21.7%

CreateTimerQueueTimer 2 / 0.2%

CreateToolhelp32Snapshot 118 / 9.2%

EnumServicesStatus 3 / 0.2%

EnumSystemFirmwareTables 1 / 0.1%

GetAdaptersAddresses 43 / 3.3%

GetAdaptersInfo 152 / 11.8%

GetCursorPos 83 / 6.4%

GetModuleFileName 1,202 / 93.4%

GetNativeSystemInfo 522 / 40.6%

GetProcAddress 0 / 0.0%

GetPwrCapabilities 0 / 0.0%

GetSystemFirmwareTable 24 / 1.9%

Method # Found Indicators

GetSystemInfo 313 / 24.3%

GetUserName 308 / 23.9%

GlobalMemoryStatus 162 / 12.6%

IcmpSendEcho 0 / 0.0%

Icmp6SendEcho 0 / 0.0%

IWbemServices::ExecQuery 1 / 0.1%

NtDelayExecution 5 / 0.4%

OpenSCManager 68 / 5.3%

Process32First 119 / 9.2%

Process32Next 115 / 8.9%

RegOpenKey 238 / 18.5%

RegQueryValue 229 / 17.8%

SetTimer 15 / 1.2%

SetWaitableTimer 2 / 0.2%

SetupDiGetDeviceRegistryProperty 4 / 0.3%

Sleep 11 / 0.9%

timeSetEvent 1 / 0.1%

WaitForSingleObject 248 / 19.3%

API Calls: Weak

CreateEvent 605 / 47.0%

CreateTimerQueue 6 / 0.5%

CreateWaitableTimer 5 / 0.4%

DeviceIoControl 6 / 0.5%

GetDiskFreeSpace 21 / 1.6%

GetTickCount 697 / 54.2%

Method # Found Indicators

IcmpCreateFile 0 / 0.0%

Icmp6CreateFile 0 / 0.0%

System Calls: Strong

NtCreateFile 8 / 0.6%

NtOpenKey 38 / 3.0%

NtQueryAttributesFile 16 / 1.2%

NtQueryValueKey 0 / 0.0%

System Calls: Moderate

NtCreateFile 277 / 21.5%

NtOpenKey 379 / 29.4%

NtQueryValueKey 299 / 23.2%

System Calls: Weak

NtDeviceIoControlFile 1 / 0.1%

Instructions: Strong

CPUID � 0x40000000 102 / 7.9%

CPUID � 0x8FFFFFFF 0 / 0.0%

Instructions: Moderate

CPUID � 0x80000002/3/4 27 / 2.1%

Instructions: Weak

CPUID � 0x0 1,259 / 97.8%

CPUID � 0x1 1,259 / 97.8%

Specials: Moderate

GetProcessHeap &
413 / 32.1%

CloseHandle



Table B.4: Amount of samples from the main-set that were found to use each individual indicator.

Method # Found Indicators

API Calls: Strong

CreateFile 6 / 0.0%

FindWindow 0 / 0.0%

GetFileAttributes 20 / 0.0%

GetModuleHandle 310 / 0.7%

GetProcAddress 116 / 0.3%

IsNativeVhdBoot 0 / 0.0%

NtQueryLicenseValue 0 / 0.0%

RegOpenKey 241 / 0.5%

RegQueryValue 1 / 0.0%

WNetGetProviderName 0 / 0.0%

API Calls: Moderate

CreateFile 1,553 / 3.4%

CreateTimerQueueTimer 79 / 0.2%

CreateToolhelp32Snapshot 5,455 / 12.0%

EnumServicesStatus 196 / 0.4%

EnumSystemFirmwareTables 26 / 0.1%

GetAdaptersAddresses 42 / 0.1%

GetAdaptersInfo 1,516 / 3.3%

GetCursorPos 3,305 / 7.3%

GetModuleFileName 30,449 / 66.9%

GetNativeSystemInfo 6,854 / 15.1%

GetProcAddress 14 / 0.0%

GetPwrCapabilities 15 / 0.0%

GetSystemFirmwareTable 137 / 0.3%

Method # Found Indicators

GetSystemInfo 7,835 / 17.2%

GetUserName 2,384 / 5.2%

GlobalMemoryStatus 5,610 / 12.3%

IcmpSendEcho 0 / 0.0%

Icmp6SendEcho 0 / 0.0%

IWbemServices::ExecQuery 11 / 0.0%

NtDelayExecution 87 / 0.2%

OpenSCManager 1,007 / 2.2%

Process32First 5,433 / 11.9%

Process32Next 5,420 / 11.9%

RegOpenKey 676 / 1.5%

RegQueryValue 632 / 1.4%

SetTimer 73 / 0.2%

SetWaitableTimer 10 / 0.0%

SetupDiGetDeviceRegistryProperty 27 / 0.1%

Sleep 295 / 0.6%

timeSetEvent 0 / 0.0%

WaitForSingleObject 372 / 0.8%

API Calls: Weak

CreateEvent 13,833 / 30.4%

CreateTimerQueue 11 / 0.0%

CreateWaitableTimer 308 / 0.7%

DeviceIoControl 2 / 0.0%

GetDiskFreeSpace 4 / 0.0%

GetTickCount 17,615 / 38.7%

Method # Found Indicators

IcmpCreateFile 20 / 0.0%

Icmp6CreateFile 0 / 0.0%

System Calls: Strong

NtCreateFile 6 / 0.0%

NtOpenKey 247 / 0.5%

NtQueryAttributesFile 15 / 0.0%

NtQueryValueKey 3 / 0.0%

System Calls: Moderate

NtCreateFile 1,571 / 3.4%

NtOpenKey 2,143 / 4.7%

NtQueryValueKey 934 / 2.1%

System Calls: Weak

NtDeviceIoControlFile 0 / 0.0%

Instructions: Strong

CPUID � 0x40000000 554 / 1.2%

CPUID � 0x8FFFFFFF 0 / 0.0%

Instructions: Moderate

CPUID � 0x80000002 793 / 1.7%

CPUID � 0x80000003/4 786 / 1.7%

Instructions: Weak

CPUID � 0x0 44,810 / 98.4%

CPUID � 0x1 44,811 / 98.4%

Specials: Moderate

GetProcessHeap &
17,747 / 39.0%

CloseHandle
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